Optimization of low thermal treatments to increase hydrophilic phenols in the Alperujo liquid fraction





Alperujo, Hydroxytyrosol, Olive mill by products, Phenolic compounds, Thermal treatments, TPOMW


Hydrophilic phenols are the main bioactive compounds in alperujo. Among them, 3,4-Dihydroxyphenylglycol (DHPG), Hydroxytyrosol (HT) and Tyrosol (Ty), are the most relevant and deeply studied. These compounds exhibit high antioxidant capacity and a wide range of health benefits as well as technologically promising properties. Given that, their recovery represents an attractive opportunity to valorize this by-product. In this work low thermal treatments were applied to alperujo in order to obtain phenol-enriched liquid fractions. Optimization assays combining different levels of temperature (30 to 90 ºC), time (60 to 180 min) and water content (70 to 90%), followed by response surface methodologies were performed. The results indicated that by applying optimal conditions, is possible to obtain theoretical yields of Total phenols, DHPG, HT and Ty of 2.4, 957.8, 3.4 and 6.4 times greater, respectively, than raw dry alperujo. Interestingly, all the evaluated conditions can be reproduced with low investment in a standard olive oil industry.


Download data is not yet available.


Alburquerque JA, Gonzálvez J, García D, Cegarra J. 2004. Agrochemical characterisation of "alperujo", a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 91 (2), 195-200. https://doi.org/10.1016/S0960-8524(03)00177-9 PMid:14592750

Balzan S, Cardazzo B, Novelli E, Carraro L, Fontana F, Currò S, Laghetto M, Trocino A, Xiccato G, Taticchi A, Fasolato L. 2021. Employment of phenolic compounds from olive vegetation water in broiler chickens: Effects on gut microbiota and on the shelf life of breast fillets. Molecules 26 (14). https://doi.org/10.3390/molecules26144307 PMid:34299582 PMCid:PMC8306377

Bartella L, Mazzotti F, Talarico IR, Santoro I, Di Donna L. 2021. Hydroxytyrosol fortified foods obtained by supercritical fluid extraction of olive oil. Antioxidants 10 (10). https://doi.org/10.3390/antiox10101619 PMid:34679754 PMCid:PMC8533198

Bermúdez-Oria A, Rodríguez-Gutiérrez G, Rubio-Senent F, Fernández-Prior Á, Fernández-Bolaños J. 2019. Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Sci. 148. https://doi.org/10.1016/j.meatsci.2018.07.003 PMid:30025964

Box G, Behnken D. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2 (4), 455-475. https://doi.org/10.1080/00401706.1960.10489912

Fernández-Prior Á, Bermúdez-Oria A, Millán-Linares MDC, Fernández-Bolaños J, Espejo-Calvo JA, Rodríguez-Gutiérrez G. 2021. Anti-inflammatory and antioxidant activity of hydroxytyrosol and 3,4-dihydroxyphenyglycol purified from table olive effluents. Foods 10 (2). https://doi.org/10.3390/foods10020227 PMid:33499393 PMCid:PMC7912675

Fernández-Prior MÁ, Fatuarte JCP, Bermúdez-Oria A, Viera-Alcaide I, Fernández-Bolaños J, Rodríguez-Gutiérrez G. 2020. New Liquid Source of Antioxidant Phenolic Compounds in the Olive Oil Industry: Alperujo Water. Foods 9 (7). https://doi.org/10.3390/foods9070962 PMid:32708247 PMCid:PMC7404455

Fernández-Prior MÁ, Charfi A, Bermúdez-Oria A, Rodríguez-Juan E, Fernández-Bolaños J, Rodríguez-Gutiérrez G. 2020. Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food Bioprod. Proc. 121, 131-142. https://doi.org/10.1016/j.fbp.2020.02.001

Gil KA, Tuberoso CIG. 2021. Crucial challenges in the development of green extraction technologies to obtain antioxidant bioactive compounds from agro-industrial by-products. Chem. Biochem. Eng. Q. 35 (2), 105-138. https://doi.org/10.15255/CABEQ.2021.1923

Gómez del Campo M, Morales-Sillero A, Vita Serman FV, Rousseaux MC, Searles PS. 2010. El olivar en los valles áridos del Noroeste de Argentina (provincias de Catamarca, La Rioja y San Juan). Olivae 114, 23-45.

Lama-Muñoz A, Gómez-Carretero A, Rubio-Senent F, Bermúdez-Oria A, Maya I, Fernández-Bolaños JG, Vioque B, Fernández-Bolaños J. 2021. Inhibitory effect of olive phenolic compounds isolated from olive oil by-product on melanosis of shrimps. Antioxidants 10 (5), 1-13. https://doi.org/10.3390/antiox10050728 PMid:34063093 PMCid:PMC8147989

Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, Gómez-Carretero A, Fernández-Bolaños J. 2011. New hydrothermal treatment of alperujo enhances the content of bioactive minor components in crude pomace olive oil. J. Agric. Food Chem. 59 (4), 1115-1123. https://doi.org/10.1021/jf103555h PMid:21265536

Lama-Muñoz A, Rubio-Senent F, Bermúdez-Oria A, Fernández-Bolaños J, Fernández-Prior A, Rodríguez-Gutiérrez, G. 2019. The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. Innov. Food Sci. Emerg. Technol. 55, 11-17. https://doi.org/10.1016/j.ifset.2019.05.009

Martinez LE, Rizzo PF, Bres PA, Riera NI, Beily ME, Young B. 2021. Compendio de métodos analíticos para la caracterización de residuos, compost y efluentes de origen agropecuario y agroindustrial. Ediciones INTA, Argentina. http://hdl.handle.net/20.500.12123/10587

Monasterio RP, Olmo-García L, Bajoub A, Fernández-Gutiérrez A, Carrasco-Pancorbo A. 2017. Phenolic Compounds Profiling of Virgin Olive Oils from Different Varieties Cultivated in Mendoza, Argentina, by Using Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 65 (37), 8184-8195. https://doi.org/10.1021/acs.jafc.7b02664 PMid:28806514

Monetta P, Bueno L, Cornejo V, González-Aubone F, Babelis, G. 2012. Short-term dynamics of soil chemical parameters after application of alperujo in high-density drip-irrigated olive groves in Argentina. Int. J. Environ. Stud. 69 (4), 578-588. https://doi.org/10.1080/00207233.2012.693290

Monetta P, Renzi L, Suarez E, Cornejo V, Oviedo, A. 2019. Mapa de residuos sólidos y semisólidos de la industria aceitera olivícola de la provincia San Juan (campaña 2016). II Simp. Resid. Agrop. Agroind. NOA Cuyo. 2019, 155-157. Ediciones INTA. https://inta.gob.ar/sites/default/files/inta-libro_de_trabajos_del_ii_sraya_noa_y_cuyo_-san_juan_2018.pdf

Montgomery DC, Wiley JS. Design and analysis of experiments. 1984. Exp. Therm. Fluid Sci. 1 (1), 105.

Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ. 2009. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 82 (1), 25-39. https://doi.org/10.1007/s00253-008-1801-y PMid:19082586

Munekata PES., Nieto G, Pateiro M, Lorenzo JM. 2020. Phenolic compounds obtained from olea europaea by products and their use to improve the quality and shelf life of meat and meat products, a review. Antioxidants 9 (11), 1-24. https://doi.org/10.3390/antiox9111061 PMid:33138148 PMCid:PMC7692586

Navarro AE, Cegarra J, Roig A, Garcia D. 1993. Relationships between organic matter and carbon contents of organic wastes. Biores. Tech. 44 (3), 203-207. https://doi.org/10.1016/0960-8524(93)90153-3

Niknam SM, Kashaninejad M, Escudero I, Sanz MT, Beltrán S, Benito, JM. 2021. Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process. J. Clean. Prod. 316. https://doi.org/10.1016/j.jclepro.2021.128340

Obied HK, Bedgood D, Mailer R, Prenzler PD, Robards K. 2008. Impact of cultivar, harvesting time, and seasonal variation on the content of biophenols in olive mill waste. J. Agric. Food Chem. 56 (19). https://doi.org/10.1021/jf801802k PMid:18781756

Owen RW, Haubner R, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch, H. 2003. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem. Toxicol. 41 (5). https://doi.org/10.1016/S0278-6915(03)00011-5 PMid:12659724

Rodríguez G, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J. 2007. Effect of steam treatment of alperujo on the composition, enzymatic saccharification, and in vitro digestibility of alperujo. J. Agric. Food Chem. 55 (1), 136-142. https://doi.org/10.1021/jf0616513 PMid:17199324

Roig A, Cayuela ML, Sánchez-Monedero MA. 2006. An overview on olive mill wastes and their valorisation methods. Waste Manag. 26 (9), 960-969. https://doi.org/10.1016/j.wasman.2005.07.024 PMid:16246541

Rubio-Senent F, Fernández-Bolaños J, García-Borrego A, Lama-Muñoz A, Rodríguez-Gutiérrez G. 2017. Influence of pH on the antioxidant phenols solubilised from hydrothermally treated olive oil by-product (alperujo). Food Chem. 219, 339-345. https://doi.org/10.1016/j.foodchem.2016.09.141 PMid:27765236

Rubio-Senent F, Rodríguez-Gutiérrez G, Lama-Muñoz A, Fernández-Bolaños J. 2013. Phenolic extract obtained from steam-treated olive oil waste: Characterization and antioxidant activity. LWT - Food Sci. Technol. 54 (1), 114-124. https://doi.org/10.1016/j.lwt.2013.04.011

Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, Selvaggini R, Montedoro G. F. 2009. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 17, (2) 76-84. https://doi.org/10.1007/s10787-008-8014-y PMid:19234678

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, (3) 144-158.



How to Cite

Rodríguez M, Cornejo V, Rodríguez-Gutiérrez G, Monetta P. Optimization of low thermal treatments to increase hydrophilic phenols in the Alperujo liquid fraction. grasasaceites [Internet]. 2023Mar.22 [cited 2023Dec.3];74(1):e491. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1968




Funding data

Instituto Nacional de Tecnología Agropecuaria
Grant numbers PE I 150;PD I 518

Consejo Superior de Investigaciones Científicas
Grant numbers EMHE MHE-200059

Most read articles by the same author(s)