Treatment technologies of liquid and solid wastes from two-phase olive oil mills


  • Rafael Borja Instituto de la Grasa (CSIC)
  • Francisco Raposo Instituto de la Grasa (CSIC)
  • Bárbara Rincón Instituto de la Grasa (CSIC)



Liquid effluents, Olive oil, Treatment technologies, Two-phase olive pomace, Two-phase system


Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiable and separate waste streams. These are: 1) the wash waters from the initial cleansing of the fruit; 2) the wash waters from the secondary centrifuge and 3) the aqueous solid residues from the primary centrifugation. As well as offering process advantages they also reduce the water consumption of the mill. The introduction of this technology was carried out in 90% of Spanish olive oil factories. Therefore, the new twophase olive mill effluents (TPOME) are made up of the mixture of effluents (1) and (2), the total volume of TPOME generated being around 0.25 l/kg of olives processed. In addition, the solid residue (two-phase olive pomace, TPOP) has a high organic matter concentration giving an elevated polluting load and it cannot be easily handled by traditional technology which deals with the conventional three-phase olive cake.

So, this paper aims to report the main features and characteristics of TPOME, and of TPOP, as compared to the classical olive mill wastewater (OMW) and olive cake derived from the three-phase manufacturing process. The advantages and disadvantages of the two-phase decanting process will be summarized. Among the treatments reported for TPOME, aerobic processes in completely mixed and activated sludge reactor showed high COD removal efficiencies. Kinetic constants of the aerobic processes were also compared at different operational conditions. The report also includes the following findings: assays of anaerobic digestion of wastewaters from the washing of olives, of olive oil and the two together using fluidised-beds and hybrid reactors; the kinetics, performance, stability, purification efficiencies and methane yield coefficients; other purifying  methods for TPOME treatment including oxidation (with different chemical oxidants) and physico-chemical treatments (using different coagulants and flocculants); the anaerobic digestibility of TPOP using different influent substrate concentrations; kinetic studies of anaerobic digestion of TPOP and mass balances to predict the behaviour of the reactor and simplified kinetic models for studying the hydrolysis, acidogenic and methanogenic steps of one and two-stage anaerobic digestion of TPOP. Finally, other methods for treatment and use of TPOP were mentioned, including composting, production of alcohols, mannitol, and other added - value compounds such as monosaccharides, oligosaccharides, arabinose and glucose. Furfural and activated carbons were also produced from TPOP and included in the report.


Download data is not yet available.


Adams, C.E., Eckenfelder, W.W., Hoviuos, J.C. 1975. A kinetic model for design of completely-mixed activated sludge treating variable strength industrial wastewaters. Water Res. 9, 37-42.

Alba, J., Hidalgo, F., Martínez, F., Ruíz, M.A., Moyano, M.J., Borja, R. 1995. Evolución medioambiental de los sistemas de elaboración de aceite de oliva en Andalucía. Mercacei 2, 20-22.

Alba, J., Hidalgo, F.J., Ruiz, M.A., Martínez, F., Moyano, M.J., Borja, R., Graciani, E., Ruiz, M.V. 2001. Elaboración de aceite de oliva virgen. In: El Cultivo del Olivo, D. Barranco, R. Fernández-Escobar, L. Rallo (Eds.), p. 551-588, Mundi-Prensa, Madrid, Spain.

Aparicio, R., Roda, L., Gutiérrez, F. 1999. Effects of various compounds on virgin olive oil stability measured by Rancimat. J. Agric. Food Chem. 47, 4150-4155.

Arienzo, M., Capasso, R. 2000. Analysis of metal cations and inorganic anions in olive oil mill waste waters by atomic absorption spectroscopy and ion chromatography. Detection of metals bound mainly to the organic polymeric fraction. J. Agric. Food Chem. 48 (4), 1405-1410.

Balice, V., Cera, O. 1984. Acidic phenolic fraction of the olive vegetation water determined by a gas chromatographic method. Grasas Aceites 35 (5), 178-180.

Ballesteros, I., Oliva, J.M., Saez, F., Ballesteros, M. 2001. Ethanol production from lignocellulosic by-products of olive oil extraction. Appl. Biochem. Biotechnol. 91-93, 237-252.

Boari, G., Brunetti, A., Passino, R., Rozzi, A. 1984. Anaerobic digestion of olive oil mill wastewaters. Agric.Wastes 10 (3), 161-175.

Borja, R., Alba, J., Martín, A., Ruiz, A., Hidalgo, F. 1993. Caracterización y digestión anaerobia de las aguas de lavado de aceite de oliva virgen. Grasas Aceites 44 (2), 85-90.

Borja, R., Alba, J., Hidalgo, F. 1994. Digestión anaerobia de las aguas de lavado de aceitunas de almazara: influencia del período de recolección sobre la cinética del proceso. Grasas Aceites 45(3), 126-131.

Borja, R., Martín, A., Alonso, V., García, I., Banks, C.J. 1995a. Influence of different aerobic pretreatments on the kinetics of anaerobic digestion of olive mill wastewater. Water Res. 29 (2), 489-495.

Borja, R., Banks, C.J., Alba, J., Escobar, J.P. 1995b. The temperature dependence of the kinetic parameters derived for the aerobic treatment of wastewater from the washing of olives prior to the oil production process. J. Environ. Sci. Health A A30 (8), 1693-1705.

Borja, R., Alba, J., Banks, C.J. 1995c. Activated sludge treatment of wash waters derived from the purification of virgin olive oil in a new manufacturing process. J. Chem. Technol. Biotechnol. 64, 25-30.

Borja, R., Alba, J., Banks, C.J. 1996. Anaerobic digestion of wash waters derived from the purification of virgin olive oil using a hybrid reactor combining a filter and a sludge blanket. Process Biochem. 31 (3), 219-224.

Borja, R., Alba, J., Martín, A., Mancha, A. 1998. Influencia de la velocidad de carga orgánica sobre el proceso de digestión anaerobia de aguas de lavado de aceitunas de almazara en reactores de lecho fluidizado. Grasas Aceites 49 (1), 42-49.

Borja, R., Alba, J., Martín, A., Mancha, A. 1999. Estudio cinético del proceso de digestión anaerobia de aguas de lavado de aceitunas de almazara en reactores de mezcla completa con microorganismos inmovilizados. Grasas Aceites 50 (2) 87-93.

Borja, R., Rincón, B., Raposo, F., Alba, J., Martín, A. 2002. A study of anaerobic digestibility of two-phases olive mill solid waste (OMSW) at mesophilic temperature. Process Biochem. 38, 733-742.

Borja, R., Martín, A., Rincón, B., Raposo, F. 2003a. Kinetics for substrate utilization and methane production during the mesophilic anaerobic digestion of two-phases olive pomace (TPOP). J. Agric. Food Chem. 51 (11), 3390-3395.

Borja, R., Rincón, B., Raposo, F., Alba, J., Martín, A. 2003b. Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem. Eng. J. 15, 139-145.

Borja, R., Rincón, B., Raposo, F., Sánchez, E., Martín, A. 2004. Assessment of kinetic parameters for the mesophilic anaerobic biodegradation of two-phase olive pomace. Int. Biodet. Biodeg. 53, 71-78.

Borja, R., Martín, A., Sánchez, E., Rincón, B., Raposo, F. 2005a. Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phase olive pomace (TPOP). Process Biochem. 40, 1841-1847.

Borja, R., Sánchez, E., Rincón, B., Raposo, F., Martín, M.A., Martín, A. 2005b. Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace. Process Biochem. 40, 281-291.

Cabrera, F., López, R., Martínez-Bordiu, A., Dupuy de Lome, E., Murillo, J.M. 1996. Land treatment of olive oil mill wastewater. Int. Biodet. Biodeg. 38 (3-4), 215-225.

Capasso, R., Cristinzio, G., Evidente, A., Scognamiglio, F. 1992. Isolation spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry 31 (12) 4125-4128.

Cano-Agüera, F. 2004. Almazaras: depuración de aguas de lavado. En: Aguas de lavado de aceituna y aceite: procesos de tratamiento, p. 109-123, Ed. Infaoliva, Córdoba, Spain.

Cardoso, S.M., Silva, A.M.S., Coimbra, M.A. 2002. Structural characterization of the olive pomace pectic polysaccharide arabinan side chains. Carbohyd. Res. 337, 917-924.

Cardoso, S.M., Coimbra, M.A., Lopes da Silva, J.A. 2003. Calcium-mediated gelation of an olive pomace pectic extract. Carbohyd. Polym. 52, 125-133.

Cert, A., Alba, J., León, M., Moreda, W., Pérez, M.C. 1996. Effects of talc addition and operating mode on the quality and oxidative stability of virgin oil obtained by centrifugation. J. Agric. Food Chem. 44 (12), 3930-3934.

Di Giovacchino, L., Costantini, N., Serraiocco, A., Surrichio, G., Basti, C. 2001. Natural antioxidants and volatile compounds of virgin olive oils obtained by the two or three-phase centrifugal decanters. Eur. J. Lipid Sci. Technol. 103 (5), 279-285.

Di Giovacchino, L., Sestili, S., Di Vencenzo, D. 2002. Influence of olive processing on virgin olive quality. Eur. J. Lipid Sci. Technol. 104, 587-601.

Fernández-Bolaños, J., Fernández-Diez, M.J., Rivas- Moreno, M., Gil-Serrano, A., Pérez, T. 1983. Azúcares y polioles en aceitunas verdes III. Grasas Aceites 34, 168-171.

Fernández-Bolaños, J., Guillén, R., Rodríguez, R., Felizón, B., Heredia, A., Jiménez, A. 2000. Process for obtaining mannitol from pulp extracted from olives. Patent ES2143939 A (16-5-2000).

Fernández-Bolaños, J., Rodríguez, G., Rodríguez, R., Heredia, A., Guillén, R., Jiménez, A. 2002. Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “alperujo”. J. Agric. Food Chem. 50, 6804-6811.

Fernández-Bolaños, J., Rodríguez, G., Gómez, E., Guillén, R., Jiménez, A., Heredia, A., Rodríguez, R. 2004. Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J. Agric. Food Chem. 52 (19) 5849-5855.

Fiestas, J.A., Borja, R. 1992. Use and treatment of olive mill wastewater: current situation and prospects in Spain. Grasas Aceites 43 (2) 101-106.

Galiatsatou, P., Metaxas, M., Kasselouri-Rigopoulou, V. 2001. Mesoporous activated carbon from agricultural by-products. Microchimica Acta 136, (3/4) 147-152.

Galiatsatou, P., Metaxas, M., Arapoglou, D., Kasselouri- Rigopoulou, V. 2002. Treatment of olive mill wastewater with activated carbons from agricultural by-products. Waste Manage. 22, (7) 803-812.

García-Moreno, A. 1998. Procedimiento integral para la industrialización de alpechines y su depuración en almazaras y centros de repaso de alperujos. Patent ES2110912 A (16-02-1998).

Giannoutsou, E., Lambraki, M., Karagouni, A.D. 1997. Microbial treatment of olive mill effluents. Proc. Symp. “Olive’s wastes, Kalamata, Greece, 5-8 Nov.

Gónzalez-López, J., Bellido, E., Benítez, C. 1994. Reduction of total polyphenols in olive mill wastewater by physico-chemical purification. J. Environ. Sci. Health Part A A29 (5), 851-865.

Hamdi, M. 1992. Toxicity and Biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl. Biochem. Biotechnol. 37 (2), 155-163.

López-Camino, J. 1993. Evaluación de la experiencia de las plantas prototipo de depuración de alpechines en la cuenca del río Guadalquivir. Proc. IX Congreso Nacional de Química, 2, p.295-317, Sevilla, Spain.

Maestro-Durán, R., Borja, R., Martín, A., Fiestas, J.A., Alba, J. 1991. Biodegradación de los compuestos fenólicos presentes en el alpechín. Grasas Aceites 42 (4), 271-276.

Mameri, N., Aioueche, F., Belhocine, D., Grib, H., Lounici, H., Piron, D.L., Yahiat, Y. 2000. Preparation of activated carbon from olive solid residue. J. Chem. Technol. Biotechnol. 75 (7), 625-631.

Martínez-Nieto, L., Rodríguez, S., Giménez, J.A., Lozano, J.L., Cobo, A., Ortega, J., Hodaifa, G. 2003. Efluentes de la industria del aceite de oliva: contribución al estudio de la composición y tratamiento de las aguas de lavado de aceituna y de lavado de aceite. En: Estudio de la composición y tratamiento como subproducto de las aguas de lavado de aceituna y aceite, p. 13-44, Ed. Infaoliva, Granada, Spain.

Martínez-Nieto, L., Rodríguez, S., Giménez, J.A., Lozano, J.L., Cobo, A., Hodaifa, G. 2004. Procesos oxidativos en el tratamiento de las aguas de lavado de aceituna y de lavado de aceite. En: Aguas de lavado de aceituna y aceite: procesos de tratamiento, p. 73-102, Ed. Infaoliva, Córdoba, Spain.

Millán, B., Lucas, R., Robles, A., García, T., Álvarez de Cienfuegos, G., Gálvez, A. 2000. A study on the microbiotica from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential. Microbiol. Res. 155 (3), 143-147.

Montané, D., Salvadó, J., Torras, C., Farriol, X. 2002. High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22, 295-304.

Moreno-Castilla, C., Carrasco-Marín, M., López-Ramón, M.V., Alvarez-Merino, M.A. 2001. Chemical and physical activation of olive mill waste water to produce activated carbons. Carbon 39 (9), 1415-1420.

Niaounakis, M., Halvadakis, C.P. 2004. Olive-Mill Waste Management: Literature review and Patent Survey. Typothito – George Dardanos Publications, Athens, Greece.

Nogales, R., Thompson, R., Calmet, A., Benítez, E., Gómez, M., Elvira, C. 1998. Feasibility of microcomposting residues from olive oil production obtained using two-stage centrifugation. J. Environ. Sci. Health A A33 (7), 1491-1506.

Piacquadio, P., Stefano, G., Sciancelopre, V. 1998. Quality of virgin oil extracted with the new centrifugation system using a two-phase decanter. Fet/Lipid 100 (10), 472-474.

Ranalli, A., Angerosa, F. 1996. Intregral centrifuges for olive oil extraction. The quality characteristics of products. JAOCS 73 (4), 417-422.

Raposo, F., Borja, R., Sánchez, E., Martín, M.A., Martín, A. 2003. Inhibition kinetics of overall substrate and phenolics removal during the anaerobic digestion of two-phase olive mill effluents (TPOME) in suspended and immobilized cell reactors. Process Biochem, 39, 425-435.

Raposo, F., Borja, R., Sánchez, E., Martín, M.A., Martín, A. 2004. Performance and kinetic evaluation of the anaerobic digestion of two-phase olive mill effluents in reactors with suspended and immobilized biomass. Water Res. 38, 2017-2026.

Raposo, F., Borja, R., Sánchez, E., Martín, A. 2005. A kinetic evaluation of the anaerobic digestion of twophase olive mill effluent in batch reactors. J. Chem. Technol. Biotechnol, 80, 241-250.

Rodríguez, M.M., Pérez, J., Ramos-Cormenzana, A., Martínez, J. 1988. Effect of extracts obtained from olive oil mill waste on Bacillus megaterium ATCC 33085. J. Appl. Bacteriol 64, 219-222.

Sciancalepore, V., Colangelo, M., Sorlini, C., Ranalli, G. 1995. Compostaggio in ambiente protetto del residuo della lavorazione delle olive con impianti ad estrazioni bifásica. Ingegneria Ambientale 24, 11-12.

Sciancalepore, V., Colangelo, M., Sorlini, C., Ranalli, G. 1996. Composting of effluent from a new two-phase centrifuge olive mill. Microbial characterization of the compost. Toxicol. Environ. Chem. 55 (1-4), 145-158.

Servili, M., Baldioli, M., Selvaggini, R., Miniati, E., Machioni A., Montedoro, G. 1999. High performance liquid chromatography evaluation of phenols in olive fruit, virgin oil, vegetation waters and pomace in 1Dand 2D Nuclear Magnetic Resonance characterization. JAOCS 76 (7), 873-882.

Tsonis, S.P., Tsola, V.P., Grigoropoulos, S.G. 1987. Systematic characterization and chemical treatment of olive oil mill wastewater. Toxicol. Environ. Chem. 20- 21, 437-457.

Wheatley, A. (1990). Anaerobic digestion: a waste treatment technology. London, UK: SCI, Elsevier.




How to Cite

Borja R, Raposo F, Rincón B. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. grasasaceites [Internet]. 2006Mar.31 [cited 2021Dec.5];57(1):32-46. Available from: