Research progress on the genesis and removal methods of non-hydratable phospholipids from vegetable oils




Vegetable oils, Non-hydratable phospholipids, Detection, Degumming, Research progress


Vegetable oil phospholipids can be divided into hydratable phospholipids (HP) and non-hydratable phospholipids (NHP). The general process of alkali refining or hydration degumming can remove most of the phospholipids, and the rest is mainly non-hydratable phospholipids. A non-hydratable phospholipid has obvious hydrophobicity, which cannot be completely removed even after 16 times of washing, so the non-hydratable phospholipid is the main research target of vegetable oil degumming. In order to better understand and study the non-hydratable phospholipids, the chemical composition and origin of non-hydratable phospholipids in vegetable oil are discussed. The advantages and disadvantages of these various detection and removal methods are analyzed in this paper.


Download data is not yet available.


Abdellah MH, Scholes CA, Liu L, Kentish SE. 2020. Efficient degumming of crude canola oil using ultrafiltration membranes and bio-derived solvents. Innovative Food Sci. Emer. Technol. 59, 1-9.

Abdorrezaee Z, Raisi A. 2021. A hybrid ultrafiltration/nanofiltration/pervaporation membrane process for intensifying the refining of crude canola oil and solvent recovery. Chem. Engineer. Processing-Process Intensificat. 169, 1-15.

Aleksandra SC, Edward S. 2003. Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: calculation of phospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chem. 81, 613-619.

Antonelli M, Benedetti B, Cavaliere C, Cerrato A, Montone CM, Piovesana S, Lagana A, Capriotti AL. 2020. Phospholipidome of extra virgin olive oil: Development of a solid phase extraction protocol followed by liquid chromatography-high resolution mass spectrometry for its software-assisted identification. Food Chem. 310, 1-9. PMid:31735462

Beneito-Cambra M, Moreno-González D, García-Reyes JF, Bouza M, Gilbert-López B, Molina-Díaz A. 2020. Direct analysis of olive oil and other vegetable oils by mass spectrometry: A review. Trends Anal. Chem. 132, 1-18.

Boukhchina S, Sebai K, Cherif A, Kallel H, Mayer PM. 2004. Identification of glycerophospholipids in rapeseed, olive, almond, and sunflower oils by LC-MS and LC-MS-MS. Canadian J. Chem. 82, 1210-1215.

de Souza Araki M, de Morais Coutinho C, Gonçalves LAG, Viotto LA. 2010. Solvent permeability in commercial ultrafiltration polymeric membranes and evaluation of the structural and chemical stability towards hexane. Sep. Purif. Technol. 71, 13-21.

Dijkstra AJ. 2017. About water degumming and the hydration of non-hydratable phosphatides. Eur. J. Lipid Sci. Technol. 119, 1600496.

Diosady LL, Sleggs P, Kaji T. 1982. Chemical degumming of canola oils. Am. Oil Chem. Soc. 59, 313-316.

dos Passos RM, da Silva RM, de Almeida Pontes PV, Morgano MA, Meirelles AJA, Stevens CV, Ferreira MC, Sampaio KA. 2022. Phospholipase cocktail: A new degumming technique for crude soybean oil. Food Sci. Technol. 159, 1-9.

Gaber MAFM, Juliano P, Mansour MP, Shrestha P, Taylor C, Smith R, Trujillo FJ. 2020. Improvement of the Canola Oil Degumming Process by Applying a Megasonic Treatment. Indus. Crops Prod. 158, 1-10.

Harrison LNL, Yi ST, Mieow KC, Soek ST. 2022. Phosphorus Removal and Phytonutrients Retention in the Refining of Solvent Extracted Palm-Pressed Mesocarp Fiber Oil. J. Oleo Sci. 71, 177-185. PMid:35110462

Hashempour BF, Farshi P, Alizadeh AM, Azadmard DS, Torbati M. 2022. Nutritional Aspects of Vegetable Oils: Refined or Unrefined? Eur. J. Lipid Sci. Technol. 124, 2100149.

Hu J, Zhang B. 2011. Resarch on the refining process of green soybean oil in northeast China. J. Wuhan Instit. Technol. 30, 1-3.

Ji H, Liu Y, Wang X, Peng M. 2012. Analysis of phospholipid components and fatty acid composition in sesame oil. Agric. Machin. 15, 34-37.

Jiang X, Chang M, Jin Q, Wang X. 2015. Application of phospholipase A1 and phospholipase C in the degumming process of different kinds of crude oils. Process Biochem. 50, 432-437.

Kou W, Zhang H, Lu H, Zhu L, Liu A, Huang K, Chen H. 2018. Determination of Phospholipids in Soybean by Titanium Dioxide Nanowires Array Enrichment Combined with Internal Extractive Electrospray Ionization Mass Spectrometry. Chinese J. Anal. Chem. 46, 1913-1922.

Liu H, Liu T, Fan H, Gou M, Li G, Ren H, Wang D, Cheng Z. 2018. Corn Lecithin for Injection from Deoiled Corn Germ: Extraction, Composition, and Emulsifying Properties. Eur. J. Lipid Sci. Technol. 120, 1-11.

Liu KT, Gao S, Chung TW, Huang C, Lin YS. 2012. Effect of process conditions on the removal of phospholipids from Jatropha curcas oil during the degumming process. Chem. Engin. Res. Design 90, 1381-1386.

Meng X, Pan Q, Ding Y, Jiang L. 2014. Rapid determination of phospholipid content of vegetable oils by FTIR spectroscopy combined with partial least-square regression. Food Chem. 147, 272-278. PMid:24206718

More NS, Gogate PR. 2018a. Ultrasound assisted enzymatic degumming of crude soybean oil. Ultrason. Sonochem. 42, 805-813. PMid:29429734

More NS, Gogate PR. 2018b. Intensified degumming of crude soybean oil using cavitational reactors. J. Food Eng. 218, 33-43.

Nash AM, Frankel EN, Kwolek WF. 1984. Degumming soybean oil from fresh and damaged beans with surface-active compounds. J. Am. Oil Chem. Soc. 61, 921-923.

Nasirullah. 2005. Physical refining: Electrolytic degumming of nonhydratable gums from selected vegetable oils. J. Food Lipids. 12, 103-111.

Pan LG, Campana A, Toms MC, n MCA. 2000. A kinetic study of phospholipid extraction by degumming process in sunflower seed oil. J. Am. Oil Chem. Soc. 77, 1273-1277.

Pérez EE, Baümler ER, Crapiste GH, Carelli AA. 2019. Effect of Sunflower Collets Moisture on Extraction Yield and Oil Quality. Eur. J. Lipid Sci. Technol. 121, 1-7.

Qu Y, Sun L, Li X, Zhou S, Zhang Q, Sun L, Yu D, Jiang L, Tian B. 2016. Enzymatic degumming of soybean oil with magnetic immobilized phospholipase A2. Food Sci. Technol. 73, 290-295.

Rao, K.S., Chakrabarti, P.P., Rao, B.V.S.K., Prasad, R.B.N. 2009. Phospholipid Composition of Jatropha curcus Seed Lipids. J. Am. Oil. Chem. Soc. 86, 197-200.

Sehn, G.A.R., Gonçalves, L.A.G., Ming, C.C. 2016. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane. Grasas Aceites. 67, 1-8.

Sengar G, Kaushal P, Sharma H, Kaur M. 2013. Degumming of rice bran oil. Rev. Chem. Eng. 30, 183-198.

Serrano-Bermúdez LM, Monroy-Pena CA, Moreno D, Abril A, Niño ADI, Riascos CAM, Buitrago Hurtado G, Narváez Rincón PC. 2021. Kinetic models for degumming and bleaching of phospholipids from crude palm oil using citric acid and Super Flo B80® and Tonsil®. Food Bioprod. Proc. 129, 75-83.

Sun B, Guan Y, Li H, Jiang L, Yu D. 2011. Nonhydratable phospholipids in soybean oil were removed by water vapor method. Food Sci. 32, 49-52.

Supansa P, Pakamas C, Sininart C. 2017. Assessment of water degumming and acid degumming of mixed algal oil. J. Envir. Chem. Eng. 5, 5115-5123.

Uitterhaegen E, Sampaio KA, Delbeke EIP, De Greyt W, Cerny M, Evon P, Merah O, Talou T, Stevens CV. 2016. Characterization of French Coriander Oil as Source of Petroselinic Acid. Molecules. 21, 1-13. PMid:27617992 PMCid:PMC6273068

van Rijn JHJ, Lankhorst PP, Groen PBM, Muntendam R, de Souza AC. 2020. Robust and Reliable Quantification of Phospholipids in Edible Oils Using 31P NMR Spectroscopy. J. Am. Oil Chem. Soc. 97, 253-262.

Wibisono Y, Widodo S. 2015. Concentration boundary layer in membrane degumming: A CFD model and neural network approach. Procedia Envir. Sci. 28, 224-233.

Yang M, Zhou X, Jin Y. 2008. Non-hydratable phospholipids and their quantitative detection. Chinese J. Health Inspect. 1, 71-72.

Zhang L, Akhymetkan S, Chen J, Dong Y, Gao Y, Yu X. 2022. Convenient method for the simultaneous production of high-quality fragrant rapeseed oil and recovery of phospholipids via electrolyte degumming. Food Sci. Technol. 155, 1-8.

Zhao Q, Li P, Wang M, Zhang W, Zhao W, Yang R. 2020. Fate of phospholipids during aqueous extraction processing of peanut and effect of demulsifification treatments on oil-phosphorus-content. Food Chem. 331, 1-9. PMid:32574946

Zufarov O, Schmidt Š, Sekretár S, Cvengroš J. 2009. Ethanolamines used for degumming of rapeseed and sunflower oils as diesel fuels. Eur. J. Lipid Sci. Technol. 111, 985-992.



How to Cite

Pan F, Liu J, Yang J, Ren J, Sun Y, Li P, Yang E, Chen X, Liu B. Research progress on the genesis and removal methods of non-hydratable phospholipids from vegetable oils. Grasas aceites [Internet]. 2024Apr.10 [cited 2024May25];75(1):e543. Available from:




Funding data