The biodegradation of Olive Oil Mill Wastewaters by Sawdust and by a Phanerochaetae chrysosporium
DOI:
https://doi.org/10.3989/gya.2007.v58.i4.448Keywords:
Biodegradation, Decolorization, Olive mill wastewaters, Polyphenols, SawdustAbstract
This paper discusses decolorization and chemical oxygen demand (COD) abatement in olive mill wastewaters (OMW) by Phanerochaetae chrysosporium grown in static, stirred and immobilized cultures. When P. Chrysosporium is used in cultures, no decolorization of crude OMW is observed. Decolorization occurs only after the removal of polyphenols by adsorption in sawdust, which allows a 39% polyphenol removal. The use of a High lignin peroxides (Lip) producing medium, yields the highest OMW decolorization and COD removal efficiencies. The use of P. Chrysosporium immobilized on polyurethane foam leads to significant abatements of OMW polluting characteristics. And COD abatement reached 70%. The reduction of polyphenols reached its highest level at 62%. A significant effluent decolorization is apparent.
Downloads
References
APHA, Standard Methods for Water and Wastewater Examination, 17th ed. 1989 Amer.Public Health Assoc., Washington, D.C
Dutta S, Basu JK, Ghar RN. 2001. Studies on adsorption of p-nitrophenol on charred Saw-dust. Separation and Purification Technology. 21, 227-235 . doi:10.1016/S1383-5866(00)00205-7
Espensen JH. 1981. Chemical Kinetics and reaction mechanism. McGraw-Hill: New York.
Hernandez MT, Ramos CA, Martinez J. 1990. Bacteria degrading phenolic acids isolated on a polymeric pigment. J. Appl. Bacteriol. 69, 38-42.
Kirk TK, Farrell RL. 1987. Enzymatic ‘‘combustion’’: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505. doi:10.1146/annurev.mi.41.100187.002341
Maestro R, Borja R, Martin A, Fiestas J, Alba J. 1991. Biodegradacion de los compuestos phenolicos presentes en el alpechin. Grasas y Aceites. 42, 271-276.
Mebirouk M, Sbai ML, Skalli A. 2007. Phenols Biodegradation in olive mill waste-waters factorial experiments analysis. Statist. Probab. Letters (in press).
Sáinz JC, Gómez AG, de Leeuw JW. 1986. Chemical properties of the polymer isolated in fresh vegetation water and sludge evaporation ponds. In: International Symposium on Olive By Products Valorization., Madrid, Spain. Food and Agriculture Organization (ed.), Publication Division of the United Nations, pp. 41-60.
Sayadi S, Ellouz R. 1992. Decolourization of olive mill wastewaters by the white rot fungus Phanerochaetae chrysosporium: involvement of the lignin-degrading system. Appl. Microbiol. Biotechnol. 37, 813-817. doi:10.1007/BF00174851
Sayadi S, Ellouz R. 1993. Screening of white rot fungi for the treatment of olive mill wastewaters. J. Chem.Tech. Biotechnol. 57, 141-147.
Sayadi S, Zorgani F, Ellouz R. 1996. Decolourization of olive mill wastewaters by free and immobilized Phanerochaetae chrysosporium cultures: effect of the high molecular weight polyphenols. Appl. Bioch. Biotechnol. 56, 265-276.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.