Optimización y evaluación de aceite de salvado de mijo (Setaria italica) mediante extracción supercrítica con dióxido de carbono

Autores/as

  • M. Pang School of Biotechnology and Food Engineering, Hefei University of Technology - Key Laboratory for Agricultural Products Processing of Anhui Province
  • S. J. He School of Biotechnology and Food Engineering, Hefei University of Technology - Key Laboratory for Agricultural Products Processing of Anhui Province
  • L. L. Cao School of Biotechnology and Food Engineering, Hefei University of Technology - Key Laboratory for Agricultural Products Processing of Anhui Province
  • S. T. Jiang School of Biotechnology and Food Engineering, Hefei University of Technology - Key Laboratory for Agricultural Products Processing of Anhui Province

DOI:

https://doi.org/10.3989/gya.0239151

Palabras clave:

Aceite de salvado de mijo, Ácidos grasos, Extracción supercrítica con dióxido de carbono, Fitoesteroles, Metodología de superficie de respuesta, Propiedades fisicoquímicas

Resumen


Un diseño Box-Behnken combinado con la metodología de superficie de respuesta (RSM) se usó para optimizar los parámetros de extracción mediante fluido supercrítico (SFE) de aceite de salvado de mijo (FMBO). Los resultados mostraron que un rendimiento máximo de extracción de aceite del 7,97% se logró en las condiciones óptimas correspondientes a una presión de 30.03MPa, una temperatura 47.93 °C y un tiempo 2,3H. Además, se evaluó la calidad del aceite obtenido por SFE y mediante extracción con disolvente (SE) a partir de un análisis proximal que incluye propiedades fisicoquímicas, ácidos grasos y esteroles. El aceite de FBMO obtenido mediante SFE mostró un contenido mucho menor de fosfolípidos (0.188 mg/g) y un color mas aceptable que el aceite de la SE, mientras que contenía un mayor contenido de esteroles totales: 1,55%. El resultado del análisis térmico gravimétrico mostró un régimen importante de pérdida de peso durante un intervalo de temperatura de 300–500 °C. Los resultados muestran que FBMO obtenido por SFE puede ser una fuente nutricional prometedora para la fortificación de alimentos y se supone potencialmente que tiene mejores propiedades biológicas saludables.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amadou I, Le GW, Amza T, Sun J, Shi YH. 2013. Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res. Int. 51, 422–428. http://dx.doi.org/10.1016/j.foodres.2012.12.045

Bangoura ML, Nsor-Atindana J, Ming ZH. 2013. Solvent Optimization Extraction of Antioxidants from Foxtail millet Species' Insoluble Fibers and their Free Radical Scavenging Properties. Food Chem. 141, 736–744. http://dx.doi.org/10.1016/j.foodchem.2013.03.029 PMid:23790842

Bohn T, Tian Q, Chitchumroonchokchai C, Failla ML, Schwartz SJ, Cotter R, Waksman JA. 2007. Supplementation of test meals with fat-free phytosterol products can reduce cholesterol micellarization during simulated digestion and cholesterol accumulation by Caco-2 cells. J. Agric. Food Chem. 55, 267–272. http://dx.doi.org/10.1021/jf061829l PMid:17227052

Boskou D, 2006. Olive oil: chemistry and technology. AOCS press. http://dx.doi.org/10.1201/9781439832028 PMid:17110101

Chen CR, Wang CH, Wang LY, Hong ZH, Chen SH, Ho WJ, Chang CMJ. 2008. Supercritical carbon dioxide extraction and deacidification of rice bran oil. J. Supercrit. Fluids 45, 322–331. http://dx.doi.org/10.1016/j.supflu.2008.01.006

Chen C.-W, Cheng H.-H. 2006. A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/ nicotinamide-induced type 2 diabetes. J. Nutrit. 136, 1472–1476. PMid:16702306

Chen J, Ren X, Zhang Q, Diao X, Shen Q. 2013. Determination of protein, total carbohydrates and crude fat contents of foxtail millet using effective wavelengths in NIR spectroscopy. J. Cereal Sci. 58, 241–247. http://dx.doi.org/10.1016/j.jcs.2013.07.002

Chiavaro E, Rodriguez-Estrada MT, Barnaba C, Vittadini E, Cerretani L, Bendini A. 2008. Differential scanning calorimetry: A potential tool for discrimination of olive oil commercial categories. Anal. Chim. Acta, 625, 215–226. http://dx.doi.org/10.1016/j.aca.2008.07.031 PMid:18724997

Firestone D. 1998. Official methods and recommended practices of the AOCS. American Oil Chemists' Society.

Ge Y, Yan H, Hui B, Ni Y, Wang S, Cai T. 2002. Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J. Agric. Food Chem. 50, 685–689. http://dx.doi.org/10.1021/jf010615v PMid:11829628

Huo QG, Bi YL, Zhu XP, Wang MM. 2006. Study on components of millet oil. J. China Oil, 31, 63–64.

Innis SM, Dyer R. 1997. Dietary triacylglycerols with palmitic acid (16: 0) in the 2-position increase 16: 0 in the 2-position of plasma and chylomicron triacylglycerols, but reduce phospholipid arachidonic and docosahexaenoic acids, and alter cholesteryl ester metabolism in formula-fed piglets. J. Nutrit. 127, 1311–1319. PMid:9202085

Jiang ST, Niu L. 2011. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62, 181–189. http://dx.doi.org/10.3989/gya.078710

Kim HJ, Lee SB, Park KA, Hong IK. 1999. Characterization of extraction and separation of rice bran oil rich in EFA using SFE process. Separat. Purificat. Technol. 15, 1–8. http://dx.doi.org/10.1016/S1383-5866(98)00048-3

Liang S, Yang G, Ma Y. 2010. Chemical Characteristics and Fatty Acid Profile of Foxtail Millet Bran Oil. J. Am. Oil Chem. Soc. 87, 63–67. http://dx.doi.org/10.1007/s11746-009-1475-3

Pang M, He SJ, Wang L, Cao XM, Cao LL, Jiang ST. 2014. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil. Food Funct. 5, 1763–1770. http://dx.doi.org/10.1039/C4FO00106K PMid:24909671

Martinez-Gonzalez MA, Estruch R. 2004. Mediterranean diet, antioxidants and cancer: the need for randomized trials. European J. Cancer Prevent. 13, 327–335. http://dx.doi.org/10.1097/01.cej.0000137512.71845.bf PMid:15554561

Moreau RA, Whitaker BD, Hicks KB. 2002. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress Lipid Res. 41, 457–500. http://dx.doi.org/10.1016/S0163-7827(02)00006-1

Panagiotakos DB, Pitsavos C, Stefanadis C. 2006. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutrit. Metabol. Cardiovascular Diseases 16, 559–568. http://dx.doi.org/10.1016/j.numecd.2005.08.006 PMid:17126772

Ramadan MF, Kinni S, Seshagiri M, Mrsel JT. 2010. Fat-soluble bioactives, fatty acid profile and radical scavenging activity of Semecarpus anacardium seed oil. J. Am. Oil Chem. Soc. 87, 885–894. http://dx.doi.org/10.1007/s11746-010-1567-0

Sahari MA, Ataii D, Hamedi M. 2004. Characteristics of tea seed oil in comparison with sunflower and olive oils and its effect as a natural antioxidant. J. Am. Oil Chem. Soc. 81, 585–588. http://dx.doi.org/10.1007/s11746-006-0945-0

Shao P, Sun P, Ying Y. 2008. Response surface optimization of wheat germ oil yield by supercritical carbon dioxide extraction. Food Bioprod. Process. 86, 227–231. http://dx.doi.org/10.1016/j.fbp.2007.04.001

Wang Y, Sun D, Chen H, Qian L, Xu P. 2011. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide. Int. J. Mol. Sci. 12, 7708–7719. http://dx.doi.org/10.3390/ijms12117708 PMid:22174626 PMCid:PMC3233432

Wei ZJ, Liao AM, Zhang HX, Liu J, Jiang ST. 2009. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Biores. Technol. 100, 4214–4219. http://dx.doi.org/10.1016/j.biortech.2009.04.010 PMid:19414250

Zacchi P, Daghero J, Jaeger P, Eggers R. 2006. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide. Brazilian J. Chem. Eng. 23, 105–110. http://dx.doi.org/10.1590/S0104-66322006000100011

Zohary D, Hopf M, Weiss E. 2012. Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press. http://dx.doi.org/10.1093/acprof:osobl/9780199549061.001.0001

Publicado

2015-12-30

Cómo citar

1.
Pang M, He SJ, Cao LL, Jiang ST. Optimización y evaluación de aceite de salvado de mijo (Setaria italica) mediante extracción supercrítica con dióxido de carbono. Grasas aceites [Internet]. 30 de diciembre de 2015 [citado 1 de mayo de 2025];66(4):e107. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1573

Número

Sección

Investigación