Efectos del secado al aire y solar sobre la calidad nutricional del aceite, las semillas y pieles de las uvas Muscat Hamburg

Autores/as

DOI:

https://doi.org/10.3989/gya.0341181

Palabras clave:

Ácido graso, Piel de uva, Semillas de uva, Secado al sol, Secado solar, Total fenólico

Resumen


El orujo de uva es un subproducto agroindustrial de la producción de mosto (jugo de uva) al prensar las uvas enteras. Para poder evaluar las semillas y las pieles del orujo de uva, primero debe secarse y luego separarse mediante una máquina de tamizado. El secado del orujo es un proceso importante y necesario para una separación óptima de las semillas. El objetivo principal de este estudio fue determinar el proceso de secado óptimo para obtener aceites de semillas de uva de alta calidad. En este trabajo, los métodos de secado al aire libre y la energía solar de los residuos de uva prensados se compararon en términos de actividad de agua, recuento total de bacterias y moho, así como la composición de ácidos grasos. Los contenidos de ácido oleico y linoleico variaron entre 16,56-16,96% y 71,45-71,96%, respectivamente. Las actividades antioxidantes variaron entre 2,33-2,80 μmol trolox/g. Los resultados mostraron que los métodos de secado no disminuyeron la calidad nutricional de los residuos de la uva y evitaron el crecimiento microbiano al disminuir la actividad del agua por debajo de 0,60.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amico V, Napoli EM, Renda G, Spatafora C, Tringali C. 2004. Constituents of grape pomace from the sicilian cultivar 'nerello mascalese. Food Chem. 88, 599–607. https://doi.org/10.1016/j.foodchem.2004.02.022

AOAC. 1990. Protein (crude) in animal feed, combustion method. Official Methods of Analysis, 15th Ed., Association of Official Analytical Chemists, Arlington, VA, USA.

AOCS. 1993. Offical Methods and Recommended Practices of American Oil Chemists Society. Third edn., Method Ce.2-66.

Apaydin D, Demirci AS, Gecgel U. 2017. Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. J. Am. Oil Chem. Soc. 94, 57–67. https://doi.org/10.1007/s11746-016-2917-3

BAM, 1998. Bacteriological Analytical Manual. FDA, 8th Ed. Revision A, AOAC Gaithersburg, MD 20877, USA.

Baumann G, Gierschner K. 1971. Bestimmung von zuckern in fruchstsaften ein vergleich der enzymatischen mit der luff-schoorl-methode. Indus Obst. and Gemuseverwert.

Baydar NG, Akkurt M. 1999. Oil content and oil quality properties of some grape seeds. Turk. J. Agri. Forest 25, 163–168.

Botella C, De Ory I, Webb C, Cantero D, Blandino A. 2005. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem. Eng. J. 26, 100–106. https://doi.org/10.1016/j.bej.2005.04.020

Bozan B, Tosun G, Özcan D. 2008. Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chem. 109, 426–430. https://doi.org/10.1016/j.foodchem.2007.12.056

Cemeroglu B. 2004. Fruit and Vegetable Processing Technology, 482–497.

Frémont L. 2000. Biological effects of resveratrol. Life Sci. 66, 663–673. https://doi.org/10.1016/S0024-3205(99)00410-5

Gezer PG. 2011. Modeling drying kinetics of grape seeds and skins from Turkish cultivars. A Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University, Food Engineering, Ankara.

Goula AM, Thymiatis K, Kaderides K. 2016. Valorization of grape pomace: drying behavior and ultrasound extraction of phenolics. Food Bioprod. Process. 100, 132–144. https://doi.org/10.1016/j.fbp.2016.06.016

Guendez R, Kallithraka S, Makris DP, Kefalas P. 2005. Determination of low molecular weight polymeric constituents in grape (Vitis vinifera sp.) seed extracts: correlation with antiradical activity. Food Chem. 89, 1–9. https://doi.org/10.1016/j.foodchem.2004.02.010

Jayaprakasha GK, Selvi T, Sakariah KK. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36, 117–122. https://doi.org/10.1016/S0963-9969(02)00116-3

Jordan R. 2002. Ecorecycle Australia report on grape marc utilisation–Cold pressed grape seed oil and meal. Technical Report of the Cooperative Research Centre for International Food Manufacture and Packaging Science, Melbourne, Australia.

Larrauri JA, Rupérez P, Saura-Calixto F. 1997. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agr. Food Chem. 45, 1390–1393. https://doi.org/10.1021/jf960282f

Maier T, Schieber A, Kammerer DR, Carle R. 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 112, 551–559. https://doi.org/10.1016/j.foodchem.2008.06.005

Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 11, 340–346. https://doi.org/10.1016/S0924-2244(01)00014-0

Martinello M, Hecker G, Pramparo MC. 2007. Grape Seed Oil Deacidification by Molecular Distillation: Analysis of Operative Variables Influence Using the Response Surface Methodology. J. Food Eng. 81, 60–64. https://doi.org/10.1016/j.jfoodeng.2006.10.012

Martynenko A, Kudra T. 2016. Electrohydrodynamic (EHD) drying of grape pomace. Japan J. Food Eng. 17, 123–129.

Maskan A, Kaya S, Maskan M. 2002. Hot air and sun drying of grape leather (pestil). J. Food Eng. 54, 81–88. https://doi.org/10.1016/S0260-8774(01)00188-1

Nerantzis ET, Tataridis P. 2006. Integrated enology-utilization of winery by-products into high added value products. e- J. of Sci. and Tech., 1, 79–89.

Nunes MA, Pimentel F, Costa ASG, Alves RC, Oliveira MBPP. 2016. Cardioprotective properties of grape seed proanthocyanidins: an update. Trends Food Sci. Tech. 57, 31–39. https://doi.org/10.1016/j.tifs.2016.08.017

TS 4966. 1986. Food products-determination of crude fibre content-modified scharrer method (in Turkish). Turkish Standard Institution, Ankara, Turkey.

TUIK, 2017. Statistics for agricultural production, Turkish Statistical Institute. www. tuik.gov.tr, (in Turkish).

Vashisth T, Singh RK, Pegg RB. 2011. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT-Food Sci. Technol. 44, 1649–1657.

Waterhouse AL. 2002. Determination of total phenolics. Current Protocols in Food Analytical Chemistry. Vol. I, John Wiley & Sons, New York, NY, USA.

Xu BJ, Chang SKC. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72, 159–166. https://doi.org/10.1111/j.1750-3841.2006.00260.x PMid:17995858

Yinqiang S, Yang J, Qiuhong Y, Hua L, Wang H. 2014. Infrared, convective, and sequential infrared and convective drying of wine grape pomace. Dry Technol. 32, 686–694. https://doi.org/10.1080/07373937.2013.853670

Publicado

2018-12-30

Cómo citar

1.
Tașeri L, Gülcü M, Palabiyik I, Seçkin GU, Aktas T, Gecgel U. Efectos del secado al aire y solar sobre la calidad nutricional del aceite, las semillas y pieles de las uvas Muscat Hamburg. Grasas aceites [Internet]. 30 de diciembre de 2018 [citado 2 de mayo de 2025];69(4):e277. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1745

Número

Sección

Investigación