Efectos del calentamiento mediante horno microondas y convencional sobre la estabilidad oxidativa del aceite de maíz enriquecido con diferentes antioxidantes

Autores/as

DOI:

https://doi.org/10.3989/gya.1044182

Palabras clave:

Aceite de maíz, Cinética, Hexanal, Microonda, Oxidación palmitato de ascorbilo

Resumen


Cuatro muestras diferentes de aceites de maíz que incluyen aceites de maíz crudo (SCO, Control), refinados (RCO) y crudo enriquecido con extracto de romero (SCO + ROS) y palmitato de ascorbilo (SCO + AP) se expusieron a microondas (MWH) y calentamiento convencional (CVH). Para ambos métodos de calentamiento, el índice de peróxido (PV) y los dienos conjugados aumentaron hasta 230 °C, a partir de donde hexanal (HEX) y trienos conjugados comenzaron a aumentar. El análisis cinético reveló que la formación de PV y HEX es de primer orden y la velocidad de reacción entre las muestras fue la siguiente: Control > SCO + ROS >RCO > SCO+AP para PV y SCO + ROS > RCO > SCO + AP>Control para HEX. El contenido de ácidos grasos insaturados de las muestras tratadas con CVH y MWH mostró una reducción de 9,5 y 12,9% en SCO, mientras que fueron de 2,9 y 7,7% en RCO, 3,6 y 6,1% en SCO + ROS, y finalmente 4,0 y 4,8% en SCO + AP, respectivamente. Se concluye que el MWH condujo a un deterioro más severo y la actividad antioxidante de ROS fue superior en comparación con la de AP para ambos métodos de calentamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adhvaryu A, Erhan SZ, Liu ZS, Perez JM. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364, 87-97. https://doi.org/10.1016/S0040-6031(00)00626-2

Albi T, Lanzón A, Guinda A, Pérez-Camino MC, León M. 1997. Microwave and conventional heating effects on some physical and chemical parameters of edible fats. J. Agric. Food Chem. 45, 3000-3003. https://doi.org/10.1021/jf970168c

AOAC 1990. Official Methods of Analysis, Fifteenth edition. Association of Official Analysis Chemists, Washington, DC.

AOCS 1989. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS Champaign, IL, USA.

AOCS 2003. Official Method Ce 8-89. Determination of tocopherols and tocotrienols in vegetable oils and fats by HPLC. In Official methods and recommended practices of the American Oil Chemists' Society (4th ed.), AOCS, Champaign, IL, USA.

Basturk A, Javidipour I, Boyaci IH. 2007. Oxidative stability of natural and chemically interesterified cottonseed, palm and soybean oils. J. Food Lipids 14,170-188. https://doi.org/10.1111/j.1745-4522.2007.00078.x

Ba?türk A, Ceylan MM, Çavu? M, Boran G, Javidipour I. 2018. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT-Food Sci. Technol. 89, 358-64. https://doi.org/10.1016/j.lwt.2017.11.005

Benedini L, Schulz EP, Messina PV, Palma SD, Allemandi DA, Schulz PC. 2011. The ascorbyl palmitate-water system: Phase diagram and state of water. Colloid Surface A 375, 178-185. https://doi.org/10.1016/j.colsurfa.2010.11.083

Caponio F, Pasqualone A, Gomes T. 2003. Changes in the fatty acid composition of vegetable oils in model doughs submitted to conventional or microwave heating. Int. J. Food Sci. Tech. 38, 481-486. https://doi.org/10.1046/j.1365-2621.2003.00703.x

Chen XQ, Zhang Y, Zu YG, Yang L, Lu Q, Wang W. 2014. Antioxidant effects of rosemary extracts on sunflower oil compared with synthetic antioxidants. Int. J. Food Sci. Tech. 49, 385-91. https://doi.org/10.1111/ijfs.12311

Chu YH, Hsu HF. 1999. Effects of antioxidants on peanut oil stability. Food Chem. 66, 29-34. https://doi.org/10.1016/S0308-8146(98)00082-X

Crapiste GH, Brevedan MI, Carelli AA. 1999. Oxidation of sunflower oil during storage. J. Am. Oil Chem. Soc. 76, 1437. https://doi.org/10.1007/s11746-999-0181-5

Frankel EN. 2010. Chemistry of extra virgin olive oil: adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58, 5991-6006. https://doi.org/10.1021/jf1007677 PMid:20433198

Göksunger Y. 2011.Reaction and Fermentation Kinetics in Food Engineering, Sidas Medya Ltd. ?ti. Publisher: ?zmir, Turkey.

Hamilton RJ, Kalu C, Prisk E, Padley F, Pierce H. 1997. Chemistry of free radicals in lipids. Food Chem. 60, 193-9. https://doi.org/10.1016/S0308-8146(96)00351-2

Hassanein MM, El-Shami SM, El-Mallah MH. 2003. Changes occurring in vegetable oils composition due to microwave heating. Grasas Aceites 54, 343-349. https://doi.org/10.3989/gya.2003.v54.i4.219

Javidipour I, Erinc H, Basturk A, Tekin A. 2017. Oxidative changes in hazelnut, olive, soybean, and sunflower oils during microwave heating. Int. J. Food Prop. 20, 1582-1592. https://doi.org/10.1080/10942912.2016.1214963

Javidipour I, Qian MC. 2008. Volatile component change in whey protein concentrate during storage investigated by headspace solid-phase microextraction gas chromatography. Dairy Sci. Technol. 88, 95-104. https://doi.org/10.1051/dst:2007010

Karel M. 1992. Kinetics of lipid oxidation, Phys Chem foods, New York: Marcel Dekker Inc., pp. 651-68.

Kiralan M, Kiralan SS. 2015. Changes in Volatile Compounds of Black Cumin Oil and Hazelnut Oil by Microwave Heating Process. J. Am. Oil Chem. Soc. 92, 1445-1450. https://doi.org/10.1007/s11746-015-2711-7

Lukesova D, Dostalova J, Mahmoud EEM, Svarovska M. 2009. Oxidation Changes of Vegetable Oils during Microwave Heating. Czech J. Food Sci. 27, S178-S181. https://doi.org/10.17221/929-CJFS

Labuza TP, Dugan Jr L. 1971. Kinetics of lipid oxidation in foods. Crit. Rev. Food Sci. 2,355-405. https://doi.org/10.1080/10408397109527127

Schaich K. 2016. 'Analysis of lipid and protein oxidation in fats, oils, and foods', Oxidative stability and shelf life of foods containing oils and fats, Elsevier, pp. 1-131. https://doi.org/10.1016/B978-1-63067-056-6.00001-X PMid:26948539

Shahidi F. 1998. Indicators for evaluation of lipid oxidation and off-flavor development in food. Dev. Food Sci. 40, 55-68. https://doi.org/10.1016/S0167-4501(98)80032-0

Shahidi F, Wanasundara UN. 1996. Methods for evaluation of the oxidative stability of lipid-containing foods. Food Sci. Technol. Int. 2,73-81. https://doi.org/10.3136/fsti9596t9798.2.73

Shahidi F, Zhong Y. 2005. Antioxidants: regulatory status. Bailey's industrial oil and fat products. 1, 491-512. https://doi.org/10.1002/047167849X.bio035

Tan CP, Man YBC, Jinap S, Yusoff MSA. 2001. Effects of microwave heating on changes in chemical and thermal properties of vegetable oils. J. Am. Oil Chem. Soc. 78,1227-1232. https://doi.org/10.1007/s11745-001-0418-5

Vieira TMFS, Regitano-D'arce MAB. 1998. Stability of oils heated by microwave: UV-spectrophotometric evaluation. Food Sci. Technol. 18, 433-437. https://doi.org/10.1590/S0101-20611998000400015

Yoshida H, Kondo I, Kajimoto G. 1992a. Participation of Free Fatty-Acids in the Oxidation of Purified Soybean Oil during Microwave-Heating. J. Am. Oil Chem. Soc. 69,1136-40. https://doi.org/10.1007/BF02541050

Yoshida H, Tatsumi M, Kajimoto G. 1992b. Influence of Fatty-Acids on the Tocopherol Stability in Vegetable-Oils during Microwave-Heating. J. Am. Oil Chem. Soc. 69, 119-25. https://doi.org/10.1007/BF02540560

Publicado

2019-12-30

Cómo citar

1.
Baştürk A. Efectos del calentamiento mediante horno microondas y convencional sobre la estabilidad oxidativa del aceite de maíz enriquecido con diferentes antioxidantes. Grasas aceites [Internet]. 30 de diciembre de 2019 [citado 2 de mayo de 2025];70(4):e326. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1792

Número

Sección

Investigación