Caracterización química del aceite de barú y su subproducto de la región noroeste de Minas Gerais, Brasil

Autores/as

DOI:

https://doi.org/10.3989/gya.0447211

Palabras clave:

Carotenoides, Cerrado Brasileño, Composición de ácidos grasos, Valorización de residuos agrícolas

Resumen


En este estudio se investigó el aceite de barú y la harina de barú parcialmente desengrasada de la región noroeste de Minas Gerais, Brasil. La caracterización físico-química del aceite se realizó mediante la determinación del perfil de ácidos grasos mediante cromatografía de gases, luteína y α- y β- carotenos mediante cromatografía líquida de alta resolución y carotenoides totales mediante espectrofotometría. En la harina se analizó su composición química, fibra y contenido mineral. El aceite de barú tiene excelentes parámetros de calidad, un buen contenido de ácidos grasos insaturados y carotenoides. La harina presentó niveles relevantes de proteínas, lípidos y fibra dietética, además de tener un contenido representativo de minerales para la alimentación, como manganeso, magnesio y cobre. Así, el aceite de baru y el subproducto de su extracción tienen riqueza en su composición química y su aplicación puede agregar valor nutricional a los alimentos, además de reducir los impactos ambientales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. 2016. Official Methods of Analysis of AOAC International. Rockville, 20th ed. MD: AOAC International.

AOCS. 2009. Official methods and recommended practices of the American Oil Chemists' Society. 6th ed., Urbana, IL: USA.

Arunkumar R, Gorusupudi A, Bernstein PS. 2020. The macular carotenoids: A biochemical overview. BBA-Mol. Cell Biol. L. 1865, 158617. https://doi.org/10.1016/j.bbalip.2020.158617 PMid:31931175 PMCid:PMC7347445

Bemfeito CM, Carneiro JDS, Carvalho EEN, Coli PC, Pereira RC, Vilas Boas EVB. 2020. Nutritional and functional potential of pumpkin (Cucurbita moschata) pulp and pequi (Caryocar brasiliense Camb.) peel flours. J. Food Sci. Technol. 57, 3920-3925. https://doi.org/10.1007/s13197-020-04590-4 PMid:32904012 PMCid:PMC7447726

Bento APN, Cominetti C, Simões Filho A, Naves MMV. 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutr Metab Cardiovasc Dis. 24, 1330-1336. https://doi.org/10.1016/j.numecd.2014.07.002 PMid:25149894

Caetano KA, Ceotto JM, Ribeiro APB, Morais FPR, Ferrari RA, Pacheco MTB, Capitani CD. 2017. Effect of baru (Dipteryx alata Vog.) addition on the composition and nutritional quality of cookies. Food Sci. Technol. 37, 239-245. https://doi.org/10.1590/1678-457x.19616

Campidelli MLL, Carneiro JDS, Souza EC, Magalhães ML, Nunes EEC, Faria BP, Franco M, Vilas Boas EVB. 2020. Effects of the drying process on the fatty acid content, phenolic profile, tocopherols and antioxidant activity of baru almonds (Dipteryx alata Vog.). Grasas Aceites 71, e343. https://doi.org/10.3989/gya.1170182

Cangussu LB, Leão DP, Oliveira LS, Franca AS. 2021. Profile of bioactive compounds in pequi (Caryocar brasiliense Camb.) peel flours. Food Chem. 350, 129221. https://doi.org/10.1016/j.foodchem.2021.129221 PMid:33618096

FAO. 1985. Guidelines on Nutrition Labelling. Food and Agriculture Organization of the United Nations. Codex Alimentarius (CAC/GL 2-1985).

FAO. 1997. Guidelines for Use of Nutrition and Health Claims. Food and Agriculture Organization of the United Nations. Codex Alimentarius (CAC/GL 23-1997).

FAO. 2019. Codex standard for named vegetable oils. World Health Organization, Food and Agriculture Organization of the United Nations, Rome: Italy. Codex Stan 210-1999 (Revised in 2001, 2003, 2009, 2017 and 2019).

FDA. 2020. Nutrition labeling of food. Food and Drug Administration. Code of Federal Regulations. Title 21, volume 2 (Section 101.9).

Flakelar CL, Prenzler PD, Luckett DJ, Howitt JA, Doran G. 2017. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography.Food Chem. 214, 147-155. https://doi.org/10.1016/j.foodchem.2016.07.059 PMid:27507459

Garcia-Amezquita LE, Tejada-Ortigoza V, Heredia-Olea E, Serna-Saldívar SO, Welti-Chanes J. 2018. Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J. Food Compos. Anal. 67, 77-85. https://doi.org/10.1016/j.jfca.2018.01.004

Gupta UC, Gupta SC. 2014. Sources and deficiency diseases of mineral nutrients in human health and nutrition: a review. Pedosphere 24, 13-38. https://doi.org/10.1016/S1002-0160(13)60077-6

Kaseke T, Opara UL, Fawole OA. 2020. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: effect of preharvest and processing factors. Heliyon 6, e04962. https://doi.org/10.1016/j.heliyon.2020.e04962 PMid:32995635 PMCid:PMC7502582

Kumari M, Platel K. 2017. Effect of sulfur-containing spices on the bioaccessibility of trace minerals from selected cereals and pulses. J. Sci. Food Agric. 97, 2842-2848. https://doi.org/10.1002/jsfa.8113 PMid:27786355

Lemos MRB, Zambiazi RC, Almeida EMS, Alencar ER. 2016. Tocopherols and fatty acid profile in baru nuts (Dipteryx alata Vog.), raw and roasted: important sources in nature that can prevent diseases. Food Sci. Nutr. Technol. 1, 000107. https://doi.org/10.23880/FSNT-16000107

Lima DS, Egea MB, Cabassa ICC, Almeida AB, Sousa TL, Lima TM, Loss RA, Volp ACP, Vasconcelos LG, Dall'Oglio EL, Hernandes T, Takeuchi KP. 2020. Technological quality and sensory acceptability of nutritive bars produced with Bazil nut and baru almond coproducts. LWT-Food Sci. Technol. 110467. https://doi.org/10.1016/j.lwt.2020.110467

Marcelino G, Hiane PA, Freitas KC, Santana LF, Pott A, Donadon JR, Guimarães RCA. 2019. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients 11, 1826. https://doi.org/10.3390/nu11081826 PMid:31394805 PMCid:PMC6722810

Mba OI, Dumont MJ, Ngadi M. 2017. Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil and their blends during deep-fat frying. LWT-Food Sci. Technol. 82, 131-138. https://doi.org/10.1016/j.lwt.2017.04.027

NEPA. 2011. Tabela Brasileira de Composição de Alimentos (TACO). 4th ed. Campinas, SP: NEPA - UNICAMP.

Oliveira-Alves SC, Pereira RS, Pereira AB, Ferreira A, Mecha E, Silva AB, Serra AT, Bronze MR. 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Res. Int. 131, 109026. https://doi.org/10.1016/j.foodres.2020.109026 PMid:32247467

Pereira GS, Freitas PM, Basso SL, Araújo PM, Santos RR, Araújo PM, Conde CF, Pereira EFD, Haverroth M, Amaral AMF. 2018. Quality control of the buriti oil (Mauritia flexuosa L. f.) for use in 3-phase oil formulation for skin hydration. Int. J. Phytocosmet. Nat. Ingred. 5, 1-5. https://doi.org/10.15171/ijpni.2018.01

Pineli L, Oliveira G, Mendonça M, Borgo L, Freire E, Celestino S, Chiarello M, Botelho R. 2015a. Tracing chemical and sensory characteristics of baru oil during storage under nitrogen. LWT-Food Sci. Technol. 62, 976-982. https://doi.org/10.1016/j.lwt.2015.02.015

Pineli LLO, Carvalho MV, Aguiar LA, Oliveira GT, Celestino SMC, Botelho RBA, Chiarello MD. 2015b. Use of baru (Brazilian almond) waste from physical extraction of oil to produce flour and cookies. LWT-Food Sci. Technol. 60, 50-55. https://doi.org/10.1016/j.lwt.2014.09.035

Pinheiro-Sant'ana HM, Stringheta PC, Brandão SCC, Páez HH, Queiróz VMV. 1998. Evaluation of total carotenoids, alpha- and beta-carotene in carrots (Daucuscarota L.) during home processing. Food Sci. Technol. 18, 39-44. https://doi.org/10.1590/S0101-20611998000100009

Resende LM, Franca AS. 2019. Flours Based on Exotic Fruits and Their Processing Residues - Features and Potential Applications to Health and Disease Prevention, 2nd ed. Flour and Breads and their Fortification in Health and Disease Prevention. Academic Press, 387-401. https://doi.org/10.1016/B978-0-12-814639-2.00030-7

Rodriguez-Amaya DB. 2001. A guide to carotenoid analysis in foods. International Life Sciences Institute.

Santiago GL, Oliveira IG, Horst MA, Naves MMV, Silva MR. 2018. Peel and pulp of baru (Dipteryx Alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Sci. Technol. 38, 244-249. https://doi.org/10.1590/1678-457x.36416

Schiassi MCEV, Souza VR, Lago AMT, Campos LG, Queiroz F. 2018. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 245, 305-311. https://doi.org/10.1016/j.foodchem.2017.10.104 PMid:29287376

Siqueira APS, Castro CFS, Silveira EV, Lourenço MFC. 2016. Chemical quality of Baru almond (Dipteryx alata oil). Cienc. Rural 46, 1865-1867. https://doi.org/10.1590/0103-8478cr20150468

Siqueira APS, Pacheco MTB, Naves MMV. 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Sci. Technol. 35, 127-132. https://doi.org/10.1590/1678-457X.6532

Soares JF, Borges LA, Brandi IV, Santos SHS, Lima JP. 2021. Characterization of buriti oil produced in northern region of Minas Gerais: quality parameters, fatty acid profile and carotenoids content. Res. Soc. Dev. 10, e58010313734. https://doi.org/10.33448/rsd-v10i3.13734

Sulihatimarsyila AWN, Lau HLN, Nabilah KM, Azreena IN. 2020. Production of refined red palm-pressed fibre oil from physical refining pilot plant. CSCEE 2, 100035. https://doi.org/10.1016/j.cscee.2020.100035

Waterhouse, AL. 2002. Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 6, I1.1.1-I1.1.8.

Weyh C, Krüger K, Peeling P, Castell L. 2022. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 14, 644. https://doi.org/10.3390/nu14030644 PMid:35277003 PMCid:PMC8840645

Publicado

2022-06-14

Cómo citar

1.
Borges L, Souto R, Nascimento A, Soares J, Paiva C, Brandi I, Lima J. Caracterización química del aceite de barú y su subproducto de la región noroeste de Minas Gerais, Brasil. Grasas aceites [Internet]. 14 de junio de 2022 [citado 23 de febrero de 2025];73(2):e460. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1939

Número

Sección

Investigación

Artículos más leídos del mismo autor/a