Influencia de un injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía

Autores/as

DOI:

https://doi.org/10.3989/gya.0784211

Palabras clave:

Aceite de semilla de sandía, Injerto, PCA, Portainjerto, Sandía cidra, Semilla de sandía

Resumen


El objetivo de este estudio fue investigar los efectos del injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía. El cultivar ‘Crimson Tide’ se utilizó como vástago, mientras que dos sandías silvestres (Citrullus lanatus var. Citroides (A1 y A2)), una Lagenaria siceraria (A3) y una Cucurbita maxima Duchesne x Cucurbita moschata Duchesne (A4) se utilizaron como portainjertos. El uso de portainjertos influyó significativamente en el perfil de ácidos grasos y los parámetros físicos de semillas y aceites de semillas. La proporción de ácido linoleico más alta se encontró en el aceite de semillas de A1 y A2, el aceite de A3 tuvo la proporción de ácido oleico más alta. Los resultados mostraron que el contenido de aceite y el índice de acidez mejoró y los compuestos fenólicos totales y la actividad antioxidante tanto de la semilla como del aceite se redujeron mediante el injerto. Para obtener un aceite de semillas de sandía rico en ácido linoleico, se pueden utilizar portainjertos silvestres en el cultivo de sandía.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acar R, Ozcan MM, Kanbur G, Dursun N. 2012. Some physico-chemical properties of edible and forage watermelon seeds. Iran J. Chem. Eng. 31, 41-47.

Akbulut M, Ozcan MM, Coklar H. 2009. Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from western Anatolia. Int. J. Food Sci. Nutr. 60, 577-589. https://doi.org/10.3109/09637480801892486 PMid:19817637

AOCS. 1980. Official Methods and Recommended Practices of The American Oil Chemist's Society. 4th edn. Champaign, Illinois.

Asif M. 2015. Chemical characteristics and nutritional potentials of unsaturated fatty acids. Chem. Int. 1, 118-133.

Braide W, Odiong IJ, Oranusi S. 2012. Phytochemical and antibacterial properties of the seed of watermelon (Citrullus lanatus). P. J. Microbiol. Res. 2, 99-104.

Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee SG,Huh YC, Sun Z, Miguel A, King SR, Cohen R, Lee JM. 2008. Cucurbit grafting. Crit. Rev. Plant Sci. 27, 50-74. https://doi.org/10.1080/07352680802053940

Davis AR, Perkins-Veazie P, Hassell R, Levi A, King SR, Zhang X. 2008. Grafting effects on vegetable quality. Hortscience 43, 1670-1672. https://doi.org/10.21273/HORTSCI.43.6.1670

de Conto LC, Gragnani MAL, Maus D, Ambiel HCI, Chiu MC, Grimaldi R, Gonçalves LAG. 2011. Characterization of crude watermelon seed oil by two different extractions methods. J. Am. Oil Chem. Soc. 88, 1709-1714. https://doi.org/10.1007/s11746-011-1850-8

Duduyemi O, Adebanjo SA, Kehinde O. 2013. Extraction and determination of physico-chemical properties of watermelon seed oil (Citrullus lanatus L.) for relevant uses. Int. J. Sci. Res. 2, 66-68.

Eke R, Ejiofor E, Oyedemi S, Onoja S, Omeh N. 2021. Evaluation of nutritional composition of Citrullus lanatus Linn. (watermelon) seed and biochemical assessment of the seed oil in rats. J. Food Biochem. 45, e13763. https://doi.org/10.1111/jfbc.13763 PMid:34002399

Essien EE, Udo II, Umoh SD. 2013. Fatty acids composition and seed oils quality of Lagenaria siceraria cultivars grown Northern Nigeria. Int. J. Nat. Prod. Sci. 3, 1-8.

Essien EE, Antia BS, Peter NS. 2015. Lagenaria siceraria (Molina) standley. Total polyphenols and antioxidant activity of seed oils of bottle gourd cultivars. World J. Pharm. Res. 4, 274-285.

FAOSTAT. 2020. FAO Statistical Database, http://www.fao.org.

Gangadhara K, Nadaf HL. 2018. Genetic analysis of oleic acid and linoleic acid content in relation to oil quality in groundnut. Electron J. Plant Breed. 9 (1), 283-294. https://doi.org/10.5958/0975-928X.2018.00033.9

Hashemi SMB, Khaneghah AM, Koubaa M, Lopez-Cervantes J, Yousefabad SHA, Hosseini SF, Karimia M, Motazediana A, Asadifard S. 2017. Novel edible oil sources: microwave heating and chemical properties. Food Res. Int. 92, 147-153. https://doi.org/10.1016/j.foodres.2016.11.033 PMid:28290292

Jensen BD, Hamattal MA, Touré AT, Nantoumé AD. 2011. Watermelons in the Sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobot. Res. Appl. 9, 151-162. https://doi.org/10.17348/era.9.0.151-162

Kiin-Kabari DB, Akusu OM. 2014. Effect of processing on the proximate composition, functional properties and storage stability of watermelon (Citrullus lanatus) seed flour. J. Int. J. Biotechnol. Food Sci. 2, 143-148.

Kombo MD, Sari N. 2019. Rootstock effects on seed yield and quality in watermelon. Hortic. Environ. Biotechnol. 60, 303-312. https://doi.org/10.1007/s13580-019-00131-x

Kumar P, Rouphael Y, Cardarelli M, Colla, G. 2017. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 8, 1130. https://doi.org/10.3389/fpls.2017.01130 PMid:28713405 PMCid:PMC5492162

Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda, M. 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci. Hortic. 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003

Nayeri FD, Yarizade K. 2014. Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Mol. Biol. Rep. 41 (8), 5077-5087. https://doi.org/10.1007/s11033-014-3373-5 PMid:24816719

Pradhan RC, Meda V, Naik SN, Tabil L. 2010. Physical Properties of Canadian Grown Flaxseed in Relation to Its Processing. Int. J. Food Propert. 13 (49), 732-743. https://doi.org/10.1080/10942910902818137

Rezig L, Chouaibi M, Meddeb W, Msaada K, Hamdi S. 2019. Chemical composition and bioactive compounds of Cucurbitaceae Seeds: Potential sources for new trends of plant oils. Process Saf. Environ. Prot. 127, 73-81. https://doi.org/10.1016/j.psep.2019.05.005

Seidu KT, Otutu OL. 2016. Phytochemical composition and radical scavenging activities of watermelon (Citrullus lanatus) seed constituents. Croat J. Food Sci. Technol. 8, 83-89. https://doi.org/10.17508/CJFST.2016.8.2.07

Seymen M, Yavuz D, Dursun A, Kurtar ES, Türkmen Ö. 2019.Identification of drought-tolerant pumpkin (Cucurbita pepo l.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agric. Water Manag. 221, 150-159. https://doi.org/10.1016/j.agwat.2019.05.009

Singleton VL, Rossi JAJ. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Curr. Contents 16, 144-158.

Solmaz I, Sari N, Kombo MD, Şimşek İ, Hussein S, Namli M. 2018. Rootstock capacity in improving production and quality of triploid watermelon seeds. Turk. J. Agric. For. 42, 298-308. https://doi.org/10.3906/tar-1801-59

Tabiri B, Agbenorhevi JK, Wireko-Manu FD, Ompouma FEI. 2016. Watermelon seeds as food: nutrient composition, phytochemicals and antioxidant activity. Int. J. Food Sci. Nutr. 5, 139-144. https://doi.org/10.11648/j.ijnfs.20160502.18

TSI. 2003. TS 342, Methods of analysis for edible olive oils. Turkish Standards Institution, Ankara.

Turhan A, Ozmen N, Kuscu H, Serbeci MS, Seniz V. 2012. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic. Environ. Biotechnol. 53, 336-341. https://doi.org/10.1007/s13580-012-0034-2

Wani AA, Sogi DS, Singh P, Götz A. 2013. Impacts of refining and antioxidants on the physico-chemical characteristics and oxidative stability of watermelon seed oil. J. Am. Oil Chem. Soc. 90, 1423-1430. https://doi.org/10.1007/s11746-013-2277-1

Williams S. 1984. Official methods of analysis of the association official analytical chemists. 14th edn. Arlington VA, USA.

Yetisir H, Sari N, Yucel S. 2003. Rootstock resistance to fusarium wilt and effect on fruit yield and quality of watermelon. Phytoparasitica 31, 163-169. https://doi.org/10.1007/BF02980786

Yetisir H, Uygur V. 2010. Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant Nutr. 33, 315-327. https://doi.org/10.1080/01904160903470372

Zhao X, Guo Y, Huber DJ, Lee J. 2011. Grafting effects on postharvest ripening and quality of 1-methylcyclopropene-treated muskmelon fruit. Sci. Hortic. 130, 581-587. https://doi.org/10.1016/j.scienta.2011.08.010

Publicado

2022-09-15

Cómo citar

1.
Aydoğan-Coşkun B, Ercan M, Akbulut M, Çoklar H, Seymen M, Yavuz D, Kurtar E, Yavuz N, Süheri S, Türkmen Ö. Influencia de un injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía. Grasas aceites [Internet]. 15 de septiembre de 2022 [citado 27 de julio de 2024];73(3):e475. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1952

Número

Sección

Investigación

Datos de los fondos

Selçuk University Research Foundation
Números de la subvención 18401007