Cuantificación por GC/MS de la composición de ácidos grasos del follaje de hortalizas de hoja verde seleccionadas y sus atributos para biodiesel

Autores/as

DOI:

https://doi.org/10.3989/gya.0907212

Palabras clave:

Aceite total, Ácidos grasos, Hortalizas de hoja verde, Propiedades del biodiésel

Resumen


La demanda actual de aceite vegetal comestible está aumentando en todo el mundo, y el desarrollo de nuevas fuentes de aceite vegetal comestible de alta calidad es una tarea esencial. También existe una gran demanda de biodiesel para aplicaciones domésticas e industriales, así, los aceites de follaje podrían ser una buena fuente para estas aplicaciones. El presente estudio tuvo como objetivo la identificación y cuantificación de ácidos grasos de vegetales de hoja verde (GLV) de consumo común, como, Hibiscus cannabinusHibiscus sabdariffaBasella albaBasella rubra y Rumex vesicarius, y determinar los atributos para el biodiesel de los aceite. El contenido total de aceite más alto se obtuvo para el follaje de R. vesicarius (3,91 ± 0,27 g/100 g de polvo de hojas secas). La determinación cromatográfica, GC/MS, identificó al ácido 9,12,15-octadecatrienoico como el ácido mayoritario, seguido del ácido hexadecanoico. En Hibiscus spp. el ácido C18:3 fue el mayoritario (49,3 µmol % y 50,4 µmol %), seguido de C16:0 (23,2 µmol % y 21 µmol %) en H. cannabinus y H. sabdariffa, respectivamente. Los características para el biodiesel de los ácidos grasos de follaje de GLV también se evaluaron empíricamente. En consecuencia, los resultados generales obtenidos serán útiles para investigaciones de estos aceites como aceites vegetales para uso humano y aplicaciones de biodiesel.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aburjai T, Natsheh FM. 2003. Plants used in cosmetics. Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of Natural Products and Derivatives, 17, 987-1000. https://doi.org/10.1002/ptr.1363 PMid:14595575

Alfawaz MA. 2006. Chemical composition of hummayd (Rumex vesicarius) grown in Saudi Arabia. J. Food Comp. Anal. 19, 552-555. https://doi.org/10.1016/j.jfca.2004.09.004

AOCS 2003. Official methods and recommended practices of the American Oil Chemist's Society, Champaign.

Chuah LF, Klemeš JJ, Yusup S, Bokhari A, Akbar MM. 2017. Influence of fatty acids in waste cooking oil for cleaner biodiesel. Clean. Technol. Environ. 19, 859-868. https://doi.org/10.1007/s10098-016-1274-0

Das UN. 2006. Essential fatty acids: biochemistry, physiology and pathology. Biotechnol. J. Healthcare Nutr. Technol. 1, 420-439. https://doi.org/10.1002/biot.200600012 PMid:16892270

de Freitas ON, Rial RC, Cavalheiro LF, dos Santos Barbosa JM, Nazário CED, Viana LH. 2019. Evaluation of the oxidative stability and cold filter plugging point of soybean methyl biodiesel/bovine tallow methyl biodiesel blends. Ind. Crops Prod. 140, 111667. https://doi.org/10.1016/j.indcrop.2019.111667

Diemeleou CA, Zoue LT, Niamke SL. 2014. Basella alba seeds as a novel source of non-conventional oil with beneficial qualities. Rom. Biotechnol. Lett. 19, 8966.

Gopala Krishna AG, Hemakumar KH, Khatoon S. 2006. Study on the composition of rice bran oil and its higher free fatty acids value. J. Am. Oil Chem. Soc. 83, 117-120. https://doi.org/10.1007/s11746-006-1183-1

Gunstone FD. 2011. Production and trade of vegetable oils. In: Vegetable oils in food technology: composition, properties and uses. 2, 1-21. https://doi.org/10.1002/9781444339925.ch1

Hoseini SS, Najafi G, Sadeghi A. 2019. Chemical characterization of oil and biodiesel from Common Purslane (Portulaca) seed as novel weed plant feedstock. Ind. Crops Prod. 140, 111582. https://doi.org/10.1016/j.indcrop.2019.111582

Igbum OG, Leke L, Okoronkwo MU, Eboka A, Nwadinigwe CA. 2013. Evaluation of fuel properties from free fatty acid compositions of methyl esters obtained from four tropical virgin oils. Int. J. Appl. Chem. 9, 37-49.

Jin CW, Ghimeray AK, Wang L, Xu ML, Piao JP, Cho DH. 2013. Far infrared assisted kenaf leaf tea preparation and its effect on phenolic compounds, antioxidant and ACE inhibitory activity. J. Med. Plants Res. 7, 1121-1128.

Kim JM, Lyu JI, Lee MK, Kim DG, Kim JB, Ha BK, Kwon SJ. 2019. Cross-species transferability of EST-SSR markers derived from the transcriptome of kenaf (Hibiscus cannabinus L.) and their application to genus Hibiscus. Gen. Res. Crop Evol. 66, 1543-1556. https://doi.org/10.1007/s10722-019-00817-2

Kumar D, Singh B. 2018. Tinospora cordifolia stem extract as an antioxidant additive for enhanced stability of Karanja biodiesel. Ind. Crops Prod. 123, 10-16. https://doi.org/10.1016/j.indcrop.2018.06.049

Kumar SS, Manasa V, Tumaney AW, Bettadaiah BK, Chaudhari SR, Giridhar P. 2020. Chemical composition, nutraceuticals characterization, NMR confirmation of squalene and antioxidant activities of Basella rubra L. seed oil. RSC Adv. 10, 31863-31873. https://doi.org/10.1039/D0RA06048H PMid:35518177 PMCid:PMC9056543

Kumar SS, Manoj P, Giridhar P, Shrivastava R, Bharadwaj M. 2015b. Fruit extracts of Basella rubra that are rich in bioactives and betalains exhibit antioxidant activity and cytotoxicity against human cervical carcinoma cells. J. Funct. Foods, 15, 509-515. https://doi.org/10.1016/j.jff.2015.03.052

Kumar SS, Manoj P, Giridhar P. 2015a. Nutrition facts and functional attributes of foliage of Basella spp. LWT - Food Sci. Technol. 64, 468-474. https://doi.org/10.1016/j.lwt.2015.05.017

Kumar SS, Manoj P, Nimisha G, Giridhar P. 2016. Phytoconstituents and stability of betalains in fruit extracts of Malabar spinach (Basella rubra L.). J. Food Sci. Technol. 53, 4014-4022. https://doi.org/10.1007/s13197-016-2404-8 PMid:28035157 PMCid:PMC5156645

Madhubalaji CK, Chandra TS, Chauhan VS, Sarada R, Mudliar SN. 2020. Chlorella vulgaris cultivation in airlift photobioreactor with transparent draft tube: effect of hydrodynamics, light and carbon dioxide on biochemical profile particularly ω-6/ω-3 fatty acid ratio. J. Food Sci. Technol. 57, 866-876. https://doi.org/10.1007/s13197-019-04118-5 PMid:32123407 PMCid:PMC7026330

Mohamed R, Fernandez J, Pineda M, Aguilar M. 2007. Roselle (Hibiscus sabdariffa) seed oil is a rich source of γ-Tocopherol. J. Food Sci. 72, 207-211. https://doi.org/10.1111/j.1750-3841.2007.00285.x

Montero G, Stoytcheva M. 2011. Biodiesel: Quality, emissions and by-products. BoD-Books on Demand. https://doi.org/10.5772/2284

Mostafa, HAM. 2014. Antioxidant and antibacterial activity of callus and adventitious root extracts from Rumex vesicarius L. J. Med. Plant Res. 8, 479-488. https://doi.org/10.5897/JMPR12.846

Paraíso CM, dos Santos SS, Ogawa CYL, Sato F, dos Santos OA, Madrona GS. 2020. Hibiscus sabdariffa L. extract: Characterization (FTIR-ATR), storage stability and food application. Emir. J. Food Agric. 32, 55-61. https://doi.org/10.9755/ejfa.2020.v32.i1.2059

Salas JJ, Bootello MA, Martínez-Force E, Garcés R. 2009. Tropical vegetable fats and butters: properties and new alternatives. Ocl-Ol Corps Gras Li, 16, 254-258. https://doi.org/10.1051/ocl.2009.0278

Sekhar SC, Karuppasamy K, Vedaraman N, Kabeel AE, Sathyamurthy R, Elkelawy M, Bastawissi HAE. 2018. Biodiesel production process optimization from Pithecellobium dulce seed oil: Performance, combustion, and emission analysis on compression ignition engine fuelled with diesel/biodiesel blends. Energy Convers. Manag. 161, 141-154. https://doi.org/10.1016/j.enconman.2018.01.074

Shereena KM, Thangaraj T. 2009. Biodiesel: an alternative fuel produced from vegetable oils by transesterification. Electr. J. Biol. 5, 67-74.

Srinivasan GR, Jambulingam R. 2019. Theoretical prediction of thermophysical properties of waste beef tallow biodiesel. https://doi.org/10.31124/advance.8148710.v1

Valenga MGP, Boschen NL, Rodrigues PRP, Maia GAR. 2019. Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Ind. Crops Prod. 128, 331-337. https://doi.org/10.1016/j.indcrop.2018.11.031

Wang ML, Morris B, Tonnis B, Davis J, Pederson GA. 2012. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species. J. Agric. Food Chem. 60, 6620-6626. https://doi.org/10.1021/jf301654y PMid:22703121

Wu Y, Yuan W, Han X, Hu J, Yin L, Lv Z. 2020. Integrated analysis of fatty acid, sterol and tocopherol components of seed oils obtained from four varieties of industrial and environmental protection crops. Ind. Crops Prod. 154, 112655. https://doi.org/10.1016/j.indcrop.2020.112655

Publicado

2023-05-25

Cómo citar

1.
Kumar S, Manasa V, Madhubalaji C, Tumaney A, Giridhar P. Cuantificación por GC/MS de la composición de ácidos grasos del follaje de hortalizas de hoja verde seleccionadas y sus atributos para biodiesel. Grasas aceites [Internet]. 25 de mayo de 2023 [citado 27 de julio de 2024];74(2):e499. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1979

Número

Sección

Investigación

Datos de los fondos

Department of Biotechnology, Ministry of Science and Technology, India
Números de la subvención BT/PR1238/FNS/20/524/2011