¿Cuáles son los factores bióticos y abióticos más efectivos que afectan a la composición de ácidos grasos de la Garra rufa (Heckel, 1843)?

Autores/as

DOI:

https://doi.org/10.3989/gya.0224221

Palabras clave:

Ácidos grasos dietéticos, DHA, EPA, Garra rufa, 18:1ω9

Resumen


Se recolectaron especímenes de Garra rufa (pez doctor) de un río cálido y un arroyo frío en la provincia de Bingöl, Turquía, mensualmente durante un año. Se investigaron los efectos del mes, la estación, el género y la ubicación en la composición de ácidos grasos musculares y el contenido de lípidos y se utilizaron los ácidos grasos como marcadores dietéticos para obtener preferencias dietéticas en diferentes lugares (Ilıcalar, Garip) y períodos. El cambio total de lípidos fue estacionalmente significativo (ANOSIM-R=0,49) en ambos lugares y 18:1ω9, 20:5ω3 y 20:6ω3 fueron los ácidos grasos dietéticos más abundantes. Aunque G. rufa son predominantemente herbívoros, también pueden alimentarse de forma omnívora con dietas mixtas según la presencia o ausencia de la dieta principal. El efecto de las estaciones fue significativo en la composición de ácidos grasos independientemente de las localizaciones (Pperm=0.001). Los cambios estacionales significativos en todas las composiciones de ácidos grasos podrían atribuirse a los cambios en la abundancia y diversidad de las fuentes dietéticas en el medio ambiente debido al efecto de la temperatura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abedi M, Shiva AH, Mohammadi H, Malekpour R. 2011. Reproductive biology and age determination of Garra rufa Heckel, 1843 (Actinopterygii: Cyprinidae) in central Iran. Turk. J. Zool. 35 (3), 317-323. https://doi.org/10.3906/zoo-0810-11

Akpinar MA. 1999. Effect of dietary fatty acids and starvation on the fatty acid composition in the muscle tissue of Cyprinion macrostomus Heckel, 1843 Turk. J. Biol. 23, 309-317.

Auel H, Harjes M, da Rocha R, Stübing D, Hagen W. 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol. 25, 374-383. https://doi.org/10.1007/s00300-001-0354-7

Bauer C, Schlott, G. 2009. Fillet yield and fat content in common carp (Cyprinus carpio) produced in three Austrian carp farms with different culture methodologies. J. Appl. Ichthyol. 25 (5), 591-594. https://doi.org/10.1111/j.1439-0426.2009.01282.x

Christie WW. 1992. Gas chromatography and lipids. The Oil Press, Glaskow.

Coad BW. 2010. Freshwater Fishes of Iran-Species Accounts, Cyprinidae Garra to Vimba http://www.briancoad.com (Revised 09 November, 2010).

Dalsgaard J, St John M, Kattner G, Müller-Navarra DC, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Ad. Marine Biol. 46, 225-340. https://doi.org/10.1016/S0065-2881(03)46005-7 PMid:14601414

Demirci S, Ozdilek SY, Simsek E. 2016. Study on nutrition characteristics of Garra rufa on the River Asi. Fresenius Envir. Bull. 25 (12a), 5999-6004.

Guler GO, Kıztanır B, Aktümsek A, Citil OB, Özparlak H. 2008. Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chem. 108 (2), 689-94. https://doi.org/10.1016/j.foodchem.2007.10.080 PMid:26059149

Hara A, Radin NS. 1978. Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry 90 (1), 420-426. https://doi.org/10.1016/0003-2697(78)90046-5 PMid:727482

Higgs DA, Dosanjh BS, Plotnikoff MD, Markert JR, Lawseth D, McBride JR, Buckley JT. (1992). Influence of dietary protein to lipid ratio and lipid composition on the performance and marine survival of hatchery reared chinook salmon (Oncorhynchus tshawytscha). Bull. Aquacult. Assoc. Canada 92 (3), 46-48.

Iverson SJ. 2009. Lipids in Aquatic Ecosystems. In Arts MT, Brett MT, Kainz MJ (Eds.), Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination, Springer, New York, pp.281-308. https://doi.org/10.1007/978-0-387-89366-2_12

Kaçar S, Başhan M. 2015. Seasonal variations on the fatty acid composition of phospholipid and triacylglycerol in gonad and liver of Mastacembelus simack. J. Am. Oil Chem. Soc. 92 (9), 1313-1320. https://doi.org/10.1007/s11746-015-2692-6

Kaushik SJ, Corraze G, Radunz-Neto J, Larroquet L, Dumas J. 2006. Fatty acid profiles of wild Brown trout and Atlantic salmon juveniles in the Nivelle basin. J. Fish Biol. 68, 1376-1387. https://doi.org/10.1111/j.0022-1112.2006.01005.x

Kirsch PE, Iverson SJ, Bowe, WD, Kerr SR, Ackman R.G. 1998. Dietary effects on the FA signature of whole Atlantic cod (Gadus morhua). Canadian J. Fish. Aquat. Sci. 55 (6), 1378-1386. https://doi.org/10.1139/f98-019

Lavens P, Lebegue H, Brunel A, Dhert Ph, Sorgeloos P. 1999. Effect of dietary essential fatty acids and vitamins on egg quality in turbot broodstocks. Aquacult. Internat. 7 (4), 225-240. https://doi.org/10.1023/A:1009225028889

Mazorra C, Bruce M, Bell JG, Davie A, Alorend E, Jordan N, Rees J, Papanikos N, Porter M, Bromage MR. 2003. Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquacult. 227 (1-4), 21-33. https://doi.org/10.1016/S0044-8486(03)00493-9

Misir GB, Kutlu S, Çibuk S. 2013. Determination of Total Lipid and Fatty Acid Composition of Pearl Mullet (Chalcalburnus tarichi, Pallas 1811. Turk. J. Fish. and Aquat. Sci. 13, 777-783.

Olgunoglu MP, Olgunoglu IA, Göçer M. 2014. Seasonal variation in major minerals (Ca, P, K, Mg) and proximate composition in flesh of Mesopotamian Catfish (Silurus triostegus Heckel, 1843 from Turkey. Annual Res. Rev. Biol. 4, 2628-2633. https://doi.org/10.9734/ARRB/2014/9056

Parrish CC. 2009Lipids in aquatic ecosystems. In Arts MT, Brett MT, Kainz MJ (Eds.), Essential fatty acids in aquatic food webs, Springer, New York, pp. 309-326. https://doi.org/10.1007/978-0-387-89366-2_13

Parrish CC. 2013. Lipids in marine ecosystems. ISRN Oceanography, 2013, 604045. https://doi.org/10.5402/2013/604045

Parsons TR, Maita Y, Lailli, CM. 1984. A manuel of chemical and biological methods for Seawater Analysis. Pergamon Press, Greet Britain, pp. 173.

Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT. 2020. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environment. Rev. 28 (4), 1-14. https://doi.org/10.1139/er-2020-0031

Paulsen M, Clemmesen C, Malzahn AM. 2014. Essential fatty acid (docosahexaenoic acid, DHA) availability affects growth of larval herring in the field. Marine Biol. 161 (1), 239-244. https://doi.org/10.1007/s00227-013-2313-6

Pethybridge H, Daley R, Virtue P, Nichols P. 2010. Lipid composition and partitioning of deepwater chondrichthyans: Inferences of feeding ecology and distribution. Marine Biol. 157 (6), 1367-1384. 63 https://doi.org/10.1007/s00227-010-1416-6

Revill AT, Lansdell M. 2009. Stable isotopic evidence for trophic groupings and bioregionalisation of predators and their prey in oceanic waters off Eastern Australia. Marine Biol. 156, 1241-1253. https://doi.org/10.1007/s00227-009-1166-5

Şen Özdemir N, Caf F. 2018. Biochemical composition of the wild long-snouted female and male seahorses (Hippocampus guttulatus Cuvier, 1829). Medit. Fish. Aquacult. Res. 1 (3), 114-129.

Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

Urquidez-Bejarano P, Perez-Velazquez M, González-Félix ML, Castro-Longoria R. 2016. Fatty acid and proximate composition of wild male and female king angelfish (Holacanthus passer) gonads during the ripe and spent developmental stages. Animal Reprod. 13 (4), 820-829. https://doi.org/10.21451/1984-3143-AR836

Varga D, HanCz C, Horn P, Molnár T, Szabó A. 2013. Environmental factors influencing the slaughter value and flesh quality of the common carp in four typical fish farms in Hungary. Acta Aliment. 42 (4), 495-503. https://doi.org/10.1556/AAlim.42.2013.4.4

Viso AC, Marty JC. 1993. Fatty acids from 28 marine microalgae. Phytochem. 34 (6), 1521-1533. https://doi.org/10.1016/S0031-9422(00)90839-2

Všetičková L, Suchý P, Straková E. 2020. Factors Influencing the Lipid Content and Fatty Acids Composition of Freshwater Fish: A Review. Asian Journal of Fisheries and Aquatic Research 5, 1-10. https://doi.org/10.9734/ajfar/2019/v5i430082

Yalcin-Ozdilek F, Ekmekci F. 2006. Preliminary data on the diet of Garra rufa (Cyprinidae) in the Asi basin (Orontes), Turkey. Cybium 30 (2).

Yedier S, Kontaş S, Bostanci D, Polat N. 2016. Otolith and scale morphologies of doctor fish (Garra rufa) inhabiting Kangal Balıklı Çermik Thermal Spring (Sivas, Turkey). Iranian J. Fish. Sci. 15 (4), 1593-1608.

Publicado

2023-10-10

Cómo citar

1.
Şen Özdemir N. ¿Cuáles son los factores bióticos y abióticos más efectivos que afectan a la composición de ácidos grasos de la Garra rufa (Heckel, 1843)?. Grasas aceites [Internet]. 10 de octubre de 2023 [citado 12 de mayo de 2024];74(3):e518. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2061

Número

Sección

Investigación

Datos de los fondos

Bingöl Üniversitesi
Números de la subvención BAP-2021-35585