Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus





AI, Cyprinion macrostomus, EPA, Fatty acids, h/H, PERMANOVA


This study aimed to evaluate the effect of different factors (season, gender, location, total lipid, weight and length) on the fatty acid composition and nutritional quality of Cyprinion macrostomus. The results were evaluated through PERMANOVA, principal coordinates (PCO), and cluster analysis for similarity ranges. An analysis of similarity (ANOSIM) was performed on the distance matrix using multiple permutations within a significant fixed effect (p < 0.05). C18:1ω9, EPA and DHA were the most important fatty acids which had an effect on the nutritional quality in all the factor groups. Total lipid amount, season and length factors were the most influential on the fatty acid compositions of C. macrostomus. Summer and Spring were the best the periods for the good nutritional quality of C. macrostomus in terms of AI (Atherogenicity index), TI (Thrombogenicity index) and h/H (Σhypocholesterolemic/Σhypercholesterolemic fatty acid index). In addition, station, gender and weight had no effect on nutritional quality. The study indicated that C. macrostomus is a potential fish meat for human nutrition with high nutritional value in terms of fatty acid composition.


Download data is not yet available.


Aguiar AC, Morais DR, Santos LP, Stevanato FB, Visentainer JEL, de Souza NE, Visentainer JV. 2007. Effect of flaxseed oil in diet on fatty acid composition in the liver of Nile Tilapia (Oreochromis niloticus). Arch. Lat. Nutric. 57 (3), 273-277.

Brenna JT. 2002. Efficiency of conversion of alpha-linoleic acidv to long cahin n-3 fatty acids in man. Curr. Op. Clin. Nutrit. Metabol. Care 5 (2), 127-132.

Calder P. 2018. Very long-chain n-3 fatty acids and human health: Fact fiction and the future. Proceedings Nutrit. Soc. 77 (1), 52-72.

Cengiz EI, Ünlü E, Başhan M. 2010. Fatty acid composition of total lipids in muscle tissues of ninefreshwater fish from the River Tigris (Turkey). Turkish J. Biol. 34, 433-438.

Christie WW. 1992. Gas chromatography and lipids. The Oil Pres, Glaskow.

Coad BW. 1996. Zoogeography of the fishes of the Tigris-Euphrates basin. Zool. Midd. East 13, 51-70.

EFSA. 2013. Guidance on the assessment criteria for studies evaluating the effectiveness of 422 stunning interventions regarding animal protection at the time of killing. EFSA Panel on 423 Animal Health and Welfare (AHAW), Pharma: Italy, 11 (12), 3486, 40p.

Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H, Okolodkov YB. 1998. Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology 20 (1), 41-47.

Fernandes CE, Vasconcelos MA, Ribeiro MA, Sarubbo L A, Andrade SA, Melo Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 160, 67-71.

Food and Agriculture Organization-FAO. 2014. The state of world fisheries and aquaculture 2014: Opportunities and challenges, Rome: Italy, 243 p.

Food and Agriculture Organisation-FAO. 2018. The State of World Fisheries and Aquaculture 2018- Meeting the sustainable developing goals. Rome, License: CC BY- NC-SA 3.0 IGO.

Galloway AWE, Winder M. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE 10 (6), 1-23.

Gladyshev M I, Sushchik NN, Makhutova ON. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagland. Lipid Mediat. 107, 117-126.

Güler G O, Kıztanır B, Aktümsek A, Citil OB, Özparlak H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chem. 108 (2), 689-694.

Hara A, Radin NS. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420-426.

Henderson R J, Tocher D R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281-347.

Hlais S, El-Bistami D, El-Rahi B, Mattar MA, Obeid OA. 2013. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men. Lipids 48 (9), 853-861.

Jobling J, Leknes O. 2010. Cod liver oil: feed oil influences on fatty acid composition. Aquacult. Internat. 18, 223-230. .

Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecol. Prog. Ser. 446, 1-22.

Khériji S, EL CAFSI M, Masmoudi W, CastelL JD, Romdhane M S. (2003). Salinity and temperature effects on the lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquacult. Internat. 11, 571-582.

Kolakowska A, Szczygielski M, Bienkiewicz G, Zienkowicz L. 2000. Some of fısh species as a source of n-3 polyunsaturated fatty acids. Acta Ichthyol. Piscator. 30 (2), 59-70.

Langroudi H, Mousavi S. 2018. Reproductive biology of lotak, Cyprinion macrostomum Heckel, 1843 (Pisces: Cyprinidae), from the Tigris River drainage. Iranian J. Fisher. Sci. 17 (2), 288-299.

Matos AP, Matos AC, Moecke EHS. 2019. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian J. Food Technol. 22, 1-11.

Mellery J, Geay F, Tocher DR, Debier C, Rollin X, Larondelle Y. 2016. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS One, 11 (10), 1-24.

Napolitano GE. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21-44. M.T. Arts and B.C. Wainman (eds.). In: Lipids in Freshwater Ecosystems, Springer, New York.

Norambuena F, Rombenso A, Turchini GM. 2016. Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture 450, 48-57.

Parrish CC. 2009. Lipids in aquatic ecosystems. M.T. Arts. M.T. Brett. and M.J. Kainz (Eds.). In: Essential fatty acids in aquatic food webs. pp. 309-326. Springer. New York.

Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT. 2020. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environment. Rev. 28 (4), 1-14.

Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Experiment. Marine Biol. Ecol. 409 (1-2), 290-299.

Ramos-Filho, MM, Ramos MIL, Hiane PA, Souza EMT. 2008. Perfil lipídico de quatro espécies de peixes da região pantaneira de Mato Grosso do Sul. Food Sci. Technol. 28 (2), 361-365.

Rhee JJ, Kim E, Buring JE, Kurth T. 2017. Fish consumption. omega-3 fatty acids and risk of cardiovascular disease. Am. J. Prevent. Med. 52 (1), 10-19.

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype. feeding system and slaughter weight on the quality of light lambs. Livestock Product. Sci. 77 (2-3), 187-194.

Simat V, Bogdanovic T, Poljak V, Petricevic S. 2015. Changes in fatty acid composition. atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus. 1758) during storage on ice: Effect of fish farming activities. J. Food Composit. Anal. 40, 120-125.

Simopoulos AP. 2008. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Experiment. Biol. Med. 233, 674-688.

Şen Özdemir N, Feyzioğlu AM, Caf F, Yıldız, I. 2017. Seasonal changes in abundance, lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian J. Fisher. 64 (3), 55-66.

Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41, 717-732.

Turchini GM, Francis DS. 2009. Fatty acid metabolism (desaturation. elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British J. Nutrit. 102 (1), 69-81.

Viso AC, Marty JC. 1993. Fatty acids from 28 marine microalgae. Phytochem. 34 (6), 1521-1533.

Wijekoon M, Parrish CC, Mansour A. 2021. Effect of Growth Temperature on Muscle Lipid Class and Fatty Acid Composition in Adult Steelhead Trout (Oncorhynchus mykiss) Fed Commercial Diets with Different ω6 to ω3 Fatty Acid Ratios. J. Aquacult. Res. Develop. 12 (6)-643, 1-11.

Williams CM, Burdge G. 2006. Long-chain n-3 PUFA: plant vs. marine sources. Proceed. Nutrit. Soc. 65 (1), 42-50.



How to Cite

Şen Özdemir N, Koyun M, Caf F, Kırıcı M. Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus. grasasaceites [Internet]. 2023May25 [cited 2023Sep.22];74(2):e508. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984




Funding data

Bingöl Üniversitesi
Grant numbers BAP-2021-35585

Most read articles by the same author(s)