Grasas y Aceites, Vol 67, No 2 (2016)

Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars


https://doi.org/10.3989/gya.0641152

O. Soufi
Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria

C. Romero
Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), Spain

M. J. Motilva
Department of Food Technology CeRTA-TPV, Escuela Técnica Superior de Ingeniería Agraria, Universidad de Lleida, Spain

X. Borrás Gaya
Department of Food Technology CeRTA-TPV, Escuela Técnica Superior de Ingeniería Agraria, Universidad de Lleida, Spain

H. Louaileche
Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria

Abstract


This study investigated the changes in the flavonoid profile and antioxidant capacity of five olive cultivars after dry salting. The antioxidant activity was determined using ferric reducing ability power (FRAP), oxygen radical absorbance capacity (ORAC), and β-carotene bleaching assays. The results showed that the effects of dry salting on the analyzed parameters were significant (P < 0.05). It caused a decrease in total flavonoids with a loss rate of 55%. The HPLC analysis of extracts revealed the presence of four flavonoids: rutin, luteolin-7-glucoside, cyanidin-3-glucoside and cyanidin-3-rutinoside. Among the studied cultivars, Azeradj was characterized by high levels of flavonoids. Concerning the antioxidant activity, diverging results were obtained using different antioxidant assays. Overall, the dry salting induced a reduction in the antioxidant activity with variable values depending on the cultivar. Among the used methods, high correlations were found between flavonoid contents and the FRAP assay.

Keywords


Antioxidant activity; Cultivar; Dry salting; Flavonoid; HPLC; Olive

Full Text:


HTML PDF XML

References


Alu'datt MH, RababahT, Ereifej K, Alli I. 2013. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 139, 93–99. http://dx.doi.org/10.1016/j.foodchem.2012.12.061 PMid:23561083

Benzie I, Strain J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP Assay. Anal Biochem. 239, 70–76. http://dx.doi.org/10.1006/abio.1996.0292 PMid:8660627

Bianchi G. 2003. Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 105, 229–242. http://dx.doi.org/10.1002/ejlt.200390046

Brahmi F, Mechri B,DhibiM, Hammami M. 2013. Variations in phenolic compounds and antiradical scavenging activity of Oleaeuropaealeaves and fruits extracts collected in two different seasons. Ind. Crops Prod. 49, 256–264. http://dx.doi.org/10.1016/j.indcrop.2013.04.042

Brenes M, Rejano L, Garcia P, Sanchez AH, Garrido A. 1995. Biochemical changes in phenolic compounds during spanish-style green olive processing. J. Agric. Food Chem. 43, 2702–2706. http://dx.doi.org/10.1021/jf00058a028

Damak N, Bouaziz M, Ayadi M, Sayadi S, Damak M. 2008. Effect of the maturation process on the phenolic fractions, fatty acids, and antioxidant activity of the chétoui olive fruit cultivar. J. Agric. Food Chem. 56, 1560–1566. http://dx.doi.org/10.1021/jf072273k PMid:18257524

Dhanya R, Arun KB,Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, Jayamurthy P. 2014. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem. 158, 546–554. http://dx.doi.org/10.1016/j.foodchem.2014.02.151 PMid:24731381

Dimitrios B. 2006. Sources of natural phenolics antioxidants.Trends Food Sci. Tech. 17, 505–512. http://dx.doi.org/10.1016/j.tifs.2006.04.004

Du G, Li M, Ma F, Liang D. 2009. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem., 113, 557–562. http://dx.doi.org/10.1016/j.foodchem.2008.08.025

Erlund I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24, 851–874. http://dx.doi.org/10.1016/j.nutres.2004.07.005

Garrido-Fernández A, Fernández-Díez MJ, Adams MR. 1997. Table olives: Production and processing. In Olives and table olives (pp. 10–21). London, UK: Chapman and Hall. http://dx.doi.org/10.1007/978-1-4899-4683-6_4

ITAFV. 2011. Institut Technique de l'Arboriculture Fruitière et de la Vigne. Statistiques 2011 des olives de table. Département Etude Direction Générale (Alger).

Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. 2003. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509–6515. http://dx.doi.org/10.1021/jf0343074 PMid:14558771

McDonald S, Prenzler PD, Antolovich M, Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73, 73–84. http://dx.doi.org/10.1016/S0308-8146(00)00288-0

Morales-Soto A, García-Salas P, Rodríguez-Pérez C, Jiménez- Sánchez C, Cádiz-Gurrea M, Segura-Carretero A, Fernández-Gutiérrez A. 2014. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res. Int. 58, 35–46. http://dx.doi.org/10.1016/j.foodres.2014.01.050

Morello JR, VuorelaS, Romero MP, Motilva MJ, Heinonen M. 2005. Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 53, 2002–2008. http://dx.doi.org/10.1021/jf048386a PMid:15769127

Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity(ORAC) andferricreducing antioxidant power (FRAP) assays: a comparativestudy. J. Agric. Food Chem. 50, 3122–3128. http://dx.doi.org/10.1021/jf0116606 PMid:12009973

Panagou, E. Z. 2006. Greek dry-salted olives: Monitoring the dry-salting process and subsequent physico-chemical and microbiological profile during storage under different packing conditions at 4 and 20 °C. Food Sci. Technol. 39, 322–329. http://dx.doi.org/10.1016/j.lwt.2005.02.017

Piscopo A, De Bruno A, Zappia A, Poiana M. 2014. Antioxidant activity of dried green olives (Caroleacv.). Food Sci Technol. 58, 49–54.

Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M., Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51, 3273–3279. http://dx.doi.org/10.1021/jf0262256 PMid:12744654

Prior R, WuX, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. http://dx.doi.org/10.1021/jf0502698 PMid:15884874

Rice-Evans CA, Packer L. 2003. Flavonoids in Health and Disease. In Pietta, P. & Gardana, C. Flavonoids in herbs (pp. 43–50). CRC Press.

Romero C, García P, Brenes M, García A, Garrido A. 2002a. Phenolic compounds in natural black Spanish olive varieties. Eur. Food Res. Technol. 215, 489–496. http://dx.doi.org/10.1007/s00217-002-0619-6

Romero C, Brenes M, García P, Garrido A. 2002b. Hydroxytyrosol 4-?-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 50, 3835–3839. http://dx.doi.org/10.1021/jf011485t PMid:12059168

Rufino MM, Alves RE, Brito ES, Pérez-Jiménez J, Saura- Calixto F, Mancini-Filho J. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 121, 996–1002. http://dx.doi.org/10.1016/j.foodchem.2010.01.037

Sánchez AH, Romero C, Ramírez E, Brenes M. 2013. Storage of mechanically harvested Manzanilla olives under controlled atmospheres. Postharvest Biol.Tech. 81, 60–65. http://dx.doi.org/10.1016/j.postharvbio.2013.02.015

Savarese M, De Marco E, Sacchi R. 2007. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry Food Chem. 105, 761–770. http://dx.doi.org/10.1016/j.foodchem.2007.01.037

SoufiO, Romero C, Louaileche H.2014. Ortho-diphenol profile and antioxidant activity of Algerian black olive cultivars: Effect of dry salting process. Food Chem. 157, 504–510. http://dx.doi.org/10.1016/j.foodchem.2014.02.075 PMid:24679811

Sousa A, Malheiro R, Casal S, Bento A, Pereira JA.2014. Antioxidant activity and phenolic composition of Cv. Cobrançosa olives affected through the maturation process. J. Funct. Foods. 11, 20–29. http://dx.doi.org/10.1016/j.jff.2014.08.024

Tomás-Barberán F.A, Gil M.I. 2008. Improving the Health- Promoting Properties of Fruit and Vegetable Products. Woodhead Publishing Series in Food Science, Technology and Nutrition, CRC Press LLC. pp. 458–461.

Velioglu YS, Mazza G, Gao L, Omah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46, 4113–4117. http://dx.doi.org/10.1021/jf9801973

Ziogas V, Tanou G, Molassiotis A, Diamantidis G, Vasilakakis M. 2010. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 120, 1097–1103. http://dx.doi.org/10.1016/j.foodchem.2009.11.058




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es