Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars
DOI:
https://doi.org/10.3989/gya.0641152Keywords:
Antioxidant activity, Cultivar, Dry salting, Flavonoid, HPLC, OliveAbstract
This study investigated the changes in the flavonoid profile and antioxidant capacity of five olive cultivars after dry salting. The antioxidant activity was determined using ferric reducing ability power (FRAP), oxygen radical absorbance capacity (ORAC), and β-carotene bleaching assays. The results showed that the effects of dry salting on the analyzed parameters were significant (P < 0.05). It caused a decrease in total flavonoids with a loss rate of 55%. The HPLC analysis of extracts revealed the presence of four flavonoids: rutin, luteolin-7-glucoside, cyanidin-3-glucoside and cyanidin-3-rutinoside. Among the studied cultivars, Azeradj was characterized by high levels of flavonoids. Concerning the antioxidant activity, diverging results were obtained using different antioxidant assays. Overall, the dry salting induced a reduction in the antioxidant activity with variable values depending on the cultivar. Among the used methods, high correlations were found between flavonoid contents and the FRAP assay.
Downloads
References
Alu'datt MH, RababahT, Ereifej K, Alli I. 2013. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 139, 93–99. http://dx.doi.org/10.1016/j.foodchem.2012.12.061 PMid:23561083
Benzie I, Strain J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP Assay. Anal Biochem. 239, 70–76. http://dx.doi.org/10.1006/abio.1996.0292 PMid:8660627
Bianchi G. 2003. Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 105, 229–242. http://dx.doi.org/10.1002/ejlt.200390046
Brahmi F, Mechri B,DhibiM, Hammami M. 2013. Variations in phenolic compounds and antiradical scavenging activity of Oleaeuropaealeaves and fruits extracts collected in two different seasons. Ind. Crops Prod. 49, 256–264. http://dx.doi.org/10.1016/j.indcrop.2013.04.042
Brenes M, Rejano L, Garcia P, Sanchez AH, Garrido A. 1995. Biochemical changes in phenolic compounds during spanish-style green olive processing. J. Agric. Food Chem. 43, 2702–2706. http://dx.doi.org/10.1021/jf00058a028
Damak N, Bouaziz M, Ayadi M, Sayadi S, Damak M. 2008. Effect of the maturation process on the phenolic fractions, fatty acids, and antioxidant activity of the chétoui olive fruit cultivar. J. Agric. Food Chem. 56, 1560–1566. http://dx.doi.org/10.1021/jf072273k PMid:18257524
Dhanya R, Arun KB,Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, Jayamurthy P. 2014. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem. 158, 546–554. http://dx.doi.org/10.1016/j.foodchem.2014.02.151 PMid:24731381
Dimitrios B. 2006. Sources of natural phenolics antioxidants.Trends Food Sci. Tech. 17, 505–512. http://dx.doi.org/10.1016/j.tifs.2006.04.004
Du G, Li M, Ma F, Liang D. 2009. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem., 113, 557–562. http://dx.doi.org/10.1016/j.foodchem.2008.08.025
Erlund I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24, 851–874. http://dx.doi.org/10.1016/j.nutres.2004.07.005
Garrido-Fernández A, Fernández-Díez MJ, Adams MR. 1997. Table olives: Production and processing. In Olives and table olives (pp. 10–21). London, UK: Chapman and Hall. http://dx.doi.org/10.1007/978-1-4899-4683-6_4
ITAFV. 2011. Institut Technique de l'Arboriculture Fruitière et de la Vigne. Statistiques 2011 des olives de table. Département Etude Direction Générale (Alger).
Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. 2003. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509–6515. http://dx.doi.org/10.1021/jf0343074 PMid:14558771
McDonald S, Prenzler PD, Antolovich M, Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73, 73–84. http://dx.doi.org/10.1016/S0308-8146(00)00288-0
Morales-Soto A, García-Salas P, Rodríguez-Pérez C, Jiménez- Sánchez C, Cádiz-Gurrea M, Segura-Carretero A, Fernández-Gutiérrez A. 2014. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res. Int. 58, 35–46. http://dx.doi.org/10.1016/j.foodres.2014.01.050
Morello JR, VuorelaS, Romero MP, Motilva MJ, Heinonen M. 2005. Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 53, 2002–2008. http://dx.doi.org/10.1021/jf048386a PMid:15769127
Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity(ORAC) andferricreducing antioxidant power (FRAP) assays: a comparativestudy. J. Agric. Food Chem. 50, 3122–3128. http://dx.doi.org/10.1021/jf0116606 PMid:12009973
Panagou, E. Z. 2006. Greek dry-salted olives: Monitoring the dry-salting process and subsequent physico-chemical and microbiological profile during storage under different packing conditions at 4 and 20 °C. Food Sci. Technol. 39, 322–329. http://dx.doi.org/10.1016/j.lwt.2005.02.017
Piscopo A, De Bruno A, Zappia A, Poiana M. 2014. Antioxidant activity of dried green olives (Caroleacv.). Food Sci Technol. 58, 49–54.
Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M., Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51, 3273–3279. http://dx.doi.org/10.1021/jf0262256 PMid:12744654
Prior R, WuX, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. http://dx.doi.org/10.1021/jf0502698 PMid:15884874
Rice-Evans CA, Packer L. 2003. Flavonoids in Health and Disease. In Pietta, P. & Gardana, C. Flavonoids in herbs (pp. 43–50). CRC Press.
Romero C, García P, Brenes M, García A, Garrido A. 2002a. Phenolic compounds in natural black Spanish olive varieties. Eur. Food Res. Technol. 215, 489–496. http://dx.doi.org/10.1007/s00217-002-0619-6
Romero C, Brenes M, García P, Garrido A. 2002b. Hydroxytyrosol 4-?-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 50, 3835–3839. http://dx.doi.org/10.1021/jf011485t PMid:12059168
Rufino MM, Alves RE, Brito ES, Pérez-Jiménez J, Saura- Calixto F, Mancini-Filho J. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 121, 996–1002. http://dx.doi.org/10.1016/j.foodchem.2010.01.037
Sánchez AH, Romero C, Ramírez E, Brenes M. 2013. Storage of mechanically harvested Manzanilla olives under controlled atmospheres. Postharvest Biol.Tech. 81, 60–65. http://dx.doi.org/10.1016/j.postharvbio.2013.02.015
Savarese M, De Marco E, Sacchi R. 2007. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry Food Chem. 105, 761–770. http://dx.doi.org/10.1016/j.foodchem.2007.01.037
SoufiO, Romero C, Louaileche H.2014. Ortho-diphenol profile and antioxidant activity of Algerian black olive cultivars: Effect of dry salting process. Food Chem. 157, 504–510. http://dx.doi.org/10.1016/j.foodchem.2014.02.075 PMid:24679811
Sousa A, Malheiro R, Casal S, Bento A, Pereira JA.2014. Antioxidant activity and phenolic composition of Cv. Cobrançosa olives affected through the maturation process. J. Funct. Foods. 11, 20–29. http://dx.doi.org/10.1016/j.jff.2014.08.024
Tomás-Barberán F.A, Gil M.I. 2008. Improving the Health- Promoting Properties of Fruit and Vegetable Products. Woodhead Publishing Series in Food Science, Technology and Nutrition, CRC Press LLC. pp. 458–461.
Velioglu YS, Mazza G, Gao L, Omah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46, 4113–4117. http://dx.doi.org/10.1021/jf9801973
Ziogas V, Tanou G, Molassiotis A, Diamantidis G, Vasilakakis M. 2010. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 120, 1097–1103. http://dx.doi.org/10.1016/j.foodchem.2009.11.058
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.