Chemical composition, oxidative stability, and sensory properties of Boerhavia elegana Choisy (alhydwan) seed oil/peanut oil blends




Alhydwan seed, Arachis hypogaea L., Boerhavia elegana, Fatty acids, Overall acceptability, Oxidative stability, Peanut oil, Tocopherols


This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.


Download data is not yet available.


Al-Farga A, Zhang H, Azhari S. 2014. In Vitro Antioxidant Activity and Total Phenolic and Flavonoid Contents of Alhydwan (Boerhavia elegana Choisy) Seeds. J. Food Nutr. Res. 2, 215-220.

Al-Farga A, Zhang H, Azhari S, Chamba MVM, Nabil QA. 2015. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy) seeds. Grasas Aceites 66 (3) e090.

Alyas SA, Abdulah A, Idris NA. 2006. Oil Palm Res. (Special Issue), pp. 99-102

AOCS. 1997. Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed. AOCS Press, Champaign, USA.

Aparicio R, Roda L, Albi MA, Gutierrez F. 1999. Effect of vari­ous compounds on virgin olive oil stability measured by Rancimat. J. Agric. Food Chem. 47, 4150-4155. PMid:10552782

Azhari S, Wenshui X. 2015. Oxidative stability, chemical com­position and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China. J. Food Sci. Technol. 12, 8172-8179. PMid:26604391 PMCid:PMC4648891

Eromosele IC, Eromosele CO, Innazo P, Njerim P. 1997. Studies on some seeds and seed oils. Bioresource Technol. 64, (3) 245-247.

Fatnassi S, Nehdi I, Zarrouk H. 2009. Chemical compo­sition and profile characteristics of Osage orange Maclurapomifera (Rafin.) Schneider seed and seed oil. Ind. Crops Prod. 29, 1-8.

He ZY, Xia WS. 2007. Nutritional composition of the kernels from Canarium album L. Food Chem. 102, 808-811.

Jamieson GS, Baughman WF, Brauns DH. 1921. The chemi­cal composition of peanut oil. J. Am. Oil Chem. Soc. 43, 1372-1381.

Kyriakidis NB, Katsiloulis T. 2000. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: comparison with the relevant American Oil Chemists Society Method. J. Am. Oil Chem. Soc. 77, 1235-1238.

Mariod AA, Matthäus B. 2007. Fatty acids, tocopherols, ste­rols, phenolic profiles and oxidative stability of Cucumis melo var. agrestis oil. J. Food Lipids 15, 56-67.

Oomah BD, Ladet S, Godfrey DV, Liang J, Girard B. 2000. Characteristics of raspberry (Rubusidaeus L.) seed oil. Food Chem. 69, 187-193.

Özcan M, Seven S. 2003. Physical and chemical analyses and fatty acid composition of peanut, peanut oil and peanut butter from ÇOM and NC-7 cultivars. Grasas Aceites 54 (1), 12-18.

Pandey MK. 2012. Advances in Arachis genomics for peanut improvement. Biotechnol. Adv. 30, 639-651. PMid:22094114

Pandurangan MK, Murugesan S, Gajivaradhan P. 2014. Physicochemical properties of groundnut oil and their blends with other vegetable oils. J. Chem. Pharm. Res. 6, 60-66.

Reyes-Hernandez J, Dibildox-Alvarado E, Charo-Alonso M, Toro-Vazquez J. 2007. J. Am. Oil Chem. Soc. 84, 1081-1093.

SAS. 2002. Statistical analysis system. User manual SAS/STAT 9 version. SAS Institute Inc., NC, USA.

Silva Araujo F da, Araujo IC, Costa ICG, Rodarte de Moura CV, Chaves MH, Araujo ECE. 2014. Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states. Renewable Energy 71, 495-501.

Snedecor GW, Cochran WG. 1980. Statistical Methods. 7Ed. Iowa State University Press, Ames, Iowa.

Su MH, Shih MC, Lin KH. 2014. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 156, 369-373. PMid:24629982

Wahida Karmally RD. 2005. Balancing unsaturated fatty acids: what's the evidence for cholesterol lowering. J. Am. Diet Assoc. 105, 1068-1070. PMid:15983522



How to Cite

Al-Farga A, Baeshen M, Aqlan FM, Siddeeg A, Afifi M, Ali HA, Alayafi A, Al-Dalali S, Alkaladi A. Chemical composition, oxidative stability, and sensory properties of Boerhavia elegana Choisy (alhydwan) seed oil/peanut oil blends. Grasas aceites [Internet]. 2020Sep.15 [cited 2024Apr.21];71(3):e367. Available from: