Application of coconut fiber and shell in the bleaching of soybean oil
DOI:
https://doi.org/10.3989/gya.0781211Keywords:
Adsorbents, Agricultural waste, Bleaching, Coconut, Soybean oilAbstract
The bleaching process is an important stage in the edible oil refining operation, and is carried out by using acid-activated bleaching earths. The aim of this study was to evaluate the efficiency of coconut fiber ash, shell ash, acid-activated fiber ash and acid-activated shell ash as compared to the commercial bleaching earth in the bleaching of neutralized soybean oil. Bleaching materials were added to neutralized oil at the concentration of 1% (w/v) with agitation under vacuum at 110 °C for 30 minutes. The values for red and yellow colors, carotenoids, chlorophylls, peroxide value, p-anisidine value, free fatty acid contents, copper and iron levels of the bleached samples were determined. The results indicated that all coconut-based adsorbents have been significantly more effective than commercial bleaching earth in reducing color and the greatest reductions in carotenoid (84.25%) and chlorophyll (82.30%) contents were obtained by using acid-activated fiber ash. The peroxide value for all treatments decreased. The amounts of iron and copper as peroxide compounds decreased considerably (44.59% and 23.53%) by using acid-activated fiber ash and acid-activated shell ash, respectively. Therefore, coconut fiber and shell as agricultural wastes which have been ignored in the past might be employed as effective agents to bleach crude oils, particularly soybean oil, in refining operations.
Downloads
References
Abdi E, Gharachorloo M, Ghavami M. 2021. Investigation of using egg shell powder for bleaching of soybean oil. LWT-Food Sci. Technol. 140, 110859. https://doi.org/10.1016/j.lwt.2021.110859
Almasi A, Mousavi SA, Hesari A, Janjani H. 2016. Walnut shell as a natural adsorbent for the removal of Reactive Red 2 form aqueous solution. Intl. Res. J. Appl. Basic. Sci. 10, 551-556. http://webcache.googleusercontent.com/search?q=cache:7R5aUEJ1YxsJ:research.kums.ac.ir/attachmentsjson/download.action%3FmasterCode%3D20295+&cd=1&hl=en&ct=clnk&gl=ir
AOCS. 2003. Declared surplus peroxide value-acetic acid-chloroform method.
AOCS. 2009. Official Method Cc 13e-92. Color Fats Lovibond.
AOCS. 2017a. Official Method Cc 13d-55. Chlorophyll pigments in Refined and Bleached Oils.
AOCS. 2017b. Official Method C 3d-63. Acid value fats and oils.
AOCS. 2017c. Official Method Cd 15-75. Analyses for chromium, copper, iron, and nickel in vegetable oils by atomic absorption spectrophotometry.
Aarti Sowmya T, Gayavajitha E, Kanimozhi R, Subalakshmi R. 2018. Removal of toxic metals from industrial wastewater using Groundnut shell. Int. J. Pure Appl. Math. 119, 629-634. https://www.researchgate.net/publication/326253312_Removal_of_toxic_metals_from_industrial_waste_water_using_groundnut_shell
Boki K, Kubo M, Wada T, Tamura T. 1992. Bleaching of alkali-refined vegetable oils with clay minerals. J. Am. Oil Chem. Soc. 69, 232-236. https://doi.org/10.1007/BF02635892
BS 684. 1993. Fats and fatty oils- Determination of carotene in vegetable oils.
Diosady LL. 2005. Chlorophyll Removal from Edible oils. Int. J. Appl. Sci. Eng. 3, 81-88.
El-Hamidi M, Zaher FA. 2016. Comparison Between Some Common Clays as Adsorbents of Carotenoids, Chlorophyll and Phenolic Compounds from Vegetable Oils. Am. J. Food Technol. 11, 92-99. https://doi.org/10.3923/ajft.2016.92.99
Emojevwe V. 2013. Cocos nucifera (Coconut) Fruit: A review of its medical properties. Adv. Agr. Sci. Eng. Res. 3, 718-723.
Erten Y. 2004. Use of domestic minerals for vegetable oil blanching. Master ASTER of Science Food Engineering. İzmir Institute of Technology izmir, Turkey.
Forozan Sepehr Z, Gharachorloo M, Yousefi S. 2020. Investigation of soybean oil bleaching by using walnut shell. J. Nuts, 11, 169-177.
Hambly AJ, van Duijneveldt JS, Gates PJ. 2021. Identification of β-carotene oxidation products produced by bleaching clay using UPLC-ESI-MS/MS. Food Chem. 353, 129455. https://doi.org/10.1016/j.foodchem.2021.129455 PMid:33711704
Hussin F, Aroua MK, Wan Daud WMA. 2011. Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chem. Eng. J. 170, 90-106. https://doi.org/10.1016/j.cej.2011.03.065
ISO 6885. 2006. Animal and vegetable fats and oils - determination of anisidine value, ISO method 6885:2006, geneva, Switzerland.
Ikumapayi OM, Akinlabi ET, Majumdar JD, Akinlabi SA. 2020. Applications of coconut shell ash/particles in modern manufacturing: a case study of friction stir processing. Mod. Manuf. Process. 69-95. https://doi.org/10.1016/B978-0-12-819496-6.00004-X
Johari K, Saman N, Song ST, Heng JYY, Mat H. 2014. Study of Hg(II) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: Equilibrium andkinetic evaluation. Chem. Eng. Commun. 201, 1198-1220. https://doi.org/10.1080/00986445.2013.806311
Jung MY, Yoon SH, Min DB. 1989. Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. J. Am. Oil Chem. Soc. 66, 118-120. https://doi.org/10.1007/BF02661798
Junmao T, Zhansheng W, Xifang S, Xiaolin X, Chun L. 2008. Adsorption Kinetics of β- carotene and Chlorophyll an Acid- activation Bentonite in Model oil. Chin. J. Chem. Eng. 16 (2), 270-276. https://doi.org/10.1016/S1004-9541(08)60074-9
Kashani Motlagh MM, Youzbashi AA, Amiri Rigi Z. 2011. Effect of acid activation on structural and bleaching properties of a bentonite. Iran. J. Mater. Sci. Eng. 8, 50-56. http://ijmse.iust.ac.ir/files/site1/user_files_4qu804/ijmse-A-10-3-159-b328326.pdf
Martins AP, Sanches RA. 2019. Assessment of coconut fibers for textile applications. Revista Matéria. 24. https://doi.org/10.1590/s1517-707620190003.0743
Mirrezaie Roodaki MS, Sahari MA, Ghiassi Tarzi B, Barzegar M, Gharachorloo M. 2016. Effect of refining and thermal processes on olive oil properties. J. Agric. Sci. Technol. 18, 629-641. http://jast.modares.ac.ir/article-23-1727-en.html
Mustapha SI, Mohammed AA, Zakari AY, Mohammed HA. 2013. Performance evaluation of local clays from northern Nigeria for the refining of palm oil. J. Chem. Eng. Mater. Sci. 4, 58-66. https://doi.org/10.5897/JCEMS2013.0152
Pauline DP. 2000. Dictionary of plants used in Cambodia. Imprimerie Olympic. pp. 165-166.
Shruthi KM, Pavithra MP. 2018. A study on utilization of groundnut shell as biosorbent for heavy metals removal. Int. J. Eng. Tech. 4, 411-415. https://www.researchgate.net/publication/342260653
Silva SM, Sampaio KA, Ceriani R, Verhé R, Stevens C, Greyt WD, Meirelles AJA. 2014. Effect of type of bleaching earth on thefinal color of refined palm oil. LWT - Food Sci. Technol. 59, 1258-1264. https://doi.org/10.1016/j.lwt.2014.05.028
Subramanian R, Nabetani H, Nakajima M, Ichikawa S, Kimura T, Maekawa T. 2001. Rejection of Carotenoids in Oil Systems by a Nonporous Polymeric Composite Membrane. J. Am. Oil Chem. Soc. 78, 803-807. https://doi.org/10.1007/s11746-001-0346-4
Taksitta K, Sujarit P, Ratanawimarnwong N, Donpudsa S, Songsrirote K. 2020. Development of tannin-immobilized cellulose fiber extracted from coconut husk and the application as a biosorbent to remove heavy metal ions. Environ. Nanotechnol. Monit. Manag. 14, 100389. https://doi.org/10.1016/j.enmm.2020.100389
Usman MA, Ekwueme VI, Alaje TO, Mohammed AO. 2012. Characterization, acid activation, and bleaching performance of Ibeshe clay, Lagos, Nigeria. ISRN Ceramics, 1-5. https://doi.org/10.5402/2012/658508
Yuan J, Zhu Y, Wang J, Gan L, He M, Zhang T, Li P, Qiu F. 2021. Preparation and application of Mg-Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 126, 293-304. https://doi.org/10.1016/j.fbp.2021.01.004
Zeb A, Murkovic M. 2011. Carotenoids and triacylglycerols interactions during thermal oxidation of refined olive oil. Food Chem. 127, 1584-1593. https://doi.org/10.1016/j.foodchem.2011.02.022
Zeb A, Murkovic M. 2013. Determination of thermal oxidation and oxidation products of β-carotene in corn oil triacylglycerols. Food Res. Int. 50, 534-544. https://doi.org/10.1016/j.foodres.2011.02.039
Zheng R, Gao H, Ren Z, Cen D, Chen Z. 2017. Preparation of activated bentonite and its adsorption behaviour on oil-soluble green pigment. Physicochem. Probl. Miner. Process. 53, 829−845.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.