Controlled fermentation of heat-shocked, unsalted and inoculated Moroccan Picholine green olives

Authors

  • N. Ghabbour Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier - Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University https://orcid.org/0000-0002-5822-5224
  • Y. Rokni Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier - Research unit Bioprocess and Biointerfaces, Laboratory of industrial engineering and surface engineering, National School of Applied Sciences, Sultan Moulay Slimane University https://orcid.org/0000-0002-9590-9035
  • H. Abouloifa Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier - Research unit of microbiology, biomolecules and biotechnology, laboratory of chemistry-physics and biotechnology of molecules and materials, Faculty of Sciences and Techniques -Mohammedia, Hassan II University of Casablanca https://orcid.org/0000-0001-7874-9837
  • R. Bellaouchi Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier https://orcid.org/0000-0002-3619-4877
  • I. Hasnaoui Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier https://orcid.org/0000-0003-2949-7463
  • S. Gaamouche Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier https://orcid.org/0000-0002-5539-9288
  • N. Houmy Agro-food Technology and Quality Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research https://orcid.org/0000-0002-2330-4520
  • M. El Yamani Laboratory of Applied Sciences for the Environment and Sustainable Development, Essaouira School of Technology, Cadi Ayyad University https://orcid.org/0000-0002-3093-5304
  • R. Ben Salah Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax https://orcid.org/0000-0001-6284-5664
  • N. Ktari Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) https://orcid.org/0000-0003-2644-6951
  • E. Saalaoui Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier https://orcid.org/0000-0003-1115-8148
  • A. Asehraou Laboratory of Bioresources, Biotechnologies, Ethnopharmacology, and Health, Faculty of Sciences, University Mohamed Premier https://orcid.org/0000-0001-5195-8217

DOI:

https://doi.org/10.3989/gya.0890211

Keywords:

C. pelliculosa, Fermentation, Heat-shock, L. plantarum, Olives, Un-salted

Abstract


The present work reports the controlled fermentation of heat-shocked, unsalted and inoculated green olives. The effects of heat-shock (60, 70 and 80 °C three times for 5 min), inoculation with the oleuropeinolytic strain of L. plantarum FSO175 (L.p-FSO175) and the addition of Cell-Free Supernatant of C. pelliculosa L18 (CFS of C.p-L18) on the fermentation process of unsalted green olives were examined. The results showed a drastic reduction in the initial indigenous Enterobacteria, and an improvement in the acidification of heat-shocked olives at 70 and 80 °C, when compared to 60 °C. The inoculation with L.p-FSO175 and addition of CFS of C.p-L18 enhanced the fermentation and preservation of unsalted green olives, indicated by a significant decrease in pH, increase in free acidity and total disappearance of Enterobacteria. The heat-shock treatment at high temperature (80 °C), inoculation with L.p-FSO175 and addition of CFS of C.p-L18 led to the best reduction in bitterness, and favorable color changes (L, a, and b) in fermented olives. This sequential method led to more appreciated sensory characteristics (mainly bitterness and color) of fermented olives, lower spoilage incidence in olives, and reduced fermentation time to 50 days, and therefore may be suitable to control the fermentation of unsalted green olives of the Moroccan picholine variety.

Downloads

Download data is not yet available.

References

Abouloifa H, Gaamouche S, Rokni Y, Hasnaoui I, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, D'Hallewin G, Ben salah R, Saalaouia E, Asehraoua A. 2021. Antifungal activity of probiotic Lactobacillus strains isolated from natural fermented green olives and their application as food bio-preservative. Biol. Control 152, 104450. https://doi.org/10.1016/j.biocontrol.2020.104450

Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Ben salah R, Chihib NE, Saalaoui E, Asehraou A. 2019. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob. Proteins 12 (2), 1-14. https://doi.org/10.1007/s12602-019-09543-8 PMid:30929140

Abouloifa H, Rokni Y, Bellaouchi R, Hasnaoui I, Gaamouche S, Ghabbour N, Chaoui J, Brasca M, Karboune S, Ben salah R, Saalaouia E, Asehraoua A. 2020. Technological properties of potential probiotic lactobacillus strains isolated from traditional fermenting green olive. J. Microbiol. Biotechnol. Food Sci. 9 (5), 884-889. https://doi.org/10.15414/jmbfs.2020.9.5.884-889

Anagnostopoulos D, Bozoudi D. Tsaltas D. 2017. Yeast ecology of fermented table olives: A tool for biotechnlogical applications. Yeast: Industrial Applications; IntechOpen: Rijeka, Croatia 135-152. https://doi.org/10.5772/intechopen.70760

Aponte M, Blaiotta G, Croce FL, Mazzaglia A, Farina V, Settanni L, Moschetti G. 2012. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 30 (1), 8-16. https://doi.org/10.1016/j.fm.2011.10.005 PMid:22265277

Argyri AA, Nisiotou AA, Mallouchos A, Panagou EZ, Tassou CC. 2014. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. Int. J. Food Microbiol. 171, 68-76. https://doi.org/10.1016/j.ijfoodmicro.2013.11.003 PMid:24334091

Arroyo-López F, Bautista-Gallego J, Domínguez-Manzano J, Romero-Gil V, Rodriguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R. 2012a. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol. 32, 295-301. https://doi.org/10.1016/j.fm.2012.07.003 PMid:22986192

Arroyo-López F, Querol A, Bautista-Gallego J, Garrido-Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189-196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018 PMid:18835502

Arroyo-Lopez FN, Romero-Gil V, Bautista-Gallego J, Rodriguez-Gomez F, Jimenez-Diaz R, Garcia-Garcia P, Querol A, Garrido-Fernandez A. 2012b. Yeasts in table olive processing: desirable or spoilage microorganisms?. Int. J. Food Microbiol. 160 (1), 42-9. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003 PMid:23141644

Asehraou A, Peres C, Brito D, Faid M, Serhrouchni M. 2000. Characterization of yeast strains isolated from bloaters of fermented green table olives during storage. Grasas Aceites 51 (4), 225-229. https://doi.org/10.3989/gya.2000.v51.i4.415

Ashwell G. 1957. Colorimetric analysis of sugars. Methods Enzymol. 3, 73-105. https://doi.org/10.1016/S0076-6879(57)03350-9

Balatsouras G, Tsibri A, Dalles T, Doutsias G. 1983. Effects of Fermentation and Its Control on the Sensory Characteristics of Conservolea Variety Green Olives. Appl. Environ. Microbiol. 46 (1), 68-74. https://doi.org/10.1128/aem.46.1.68-74.1983 PMid:16346354 PMCid:PMC239269

Bautista-Gallego J, Arroyo-López FN, Durán-Quintana M, Garrido-Fernández A. 2010. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures. Food Microbiol. 27 (3), 403-412. https://doi.org/10.1016/j.fm.2009.11.015 PMid:20227606

Ben-Shalom N, Kahn V, Harel E, Mayer AM. 1977. Catechol oxidase from green olives: properties and partial purification. Phytochem. 16 (8), 1153-1158. https://doi.org/10.1016/S0031-9422(00)94350-4

Bertelli M, Kiani AK, Paolacci S, Manara E, Kurti D, Dhuli K, Bushati V, Miertus J, Pangallo D, Baglivo M. 2020. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol. 309, 29-33. https://doi.org/10.1016/j.jbiotec.2019.12.016 PMid:31884046

Chorianopoulos NG, Boziaris IS, Stamatiou A, Nychas GJE. 2005. Microbial association and acidity development of unheated and pasteurized green-table olives fermented using glucose or sucrose supplements at various levels. Food Microbiol. 22 (1), 117-124. https://doi.org/10.1016/j.fm.2004.04.010

Chytiri A, Tasioula-Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG. 2020. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 100 (3), 926-935. https://doi.org/10.1002/jsfa.10019 PMid:31523827

Ciafardini G, Zullo B. 2019. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 84, 103250. https://doi.org/10.1016/j.fm.2019.103250 PMid:31421771

Etchells JL, Borg AF, Kittel ID, Bell TA, Fleming HP. 1966. Pure Culture Fermentation of Green Olives. Appl. Microbiol. 14 (6), 1027-1041. https://doi.org/10.1128/am.14.6.1027-1041.1966 PMid:16349674 PMCid:PMC1058462

Fernandez-Diez, Castro Ramos R, Garrido Fernandez A, Heredia Moreno A, Minguez Mosquera MI, Rejano Navarro L, Duran Quintana MC, Gonzalez Cancho F, Gomez Millan A, Garcia Garcia P. 1985. Green Table Olives. In: Instituto de la Grasa y sus Derivados (ed.) Biotechnology of Table Olives. CSIC, Madrid.

Garrido-Fernández A, Martin AR, Fernández-Díez M. 1997. Table olives: production and processing, London. UK, Springer Science & Business Media.

Garrido Fernández A, Fernández Díez M, Adams M. 1997. Physical and chemical characteristics of the olive fruit. In: Hall, C. (ed.) Table olives. London, United Kingdom. https://doi.org/10.1007/978-1-4899-4683-6_5

Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaoui M, Asehraou A. 2011. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites 62 (1), 84-89. https://doi.org/10.3989/gya.055510

Ghabbour N, Rokni Y, Abouloifa H, Bellaouchi R, Chihib NE, Ben salah R, Lamzira Z, Saalaoui E, Asehraou A. 2020. In vitro biodegradation of oleuropein by lactobacillus plantarum FSO 175 in stress conditions (pH, NaCl and glucose). J. Microbiol. Biotechnol. Food Sci. 9 (4), 769-773. https://doi.org/10.15414/jmbfs.2020.9.4.769-773

Ghabbour N, Rokni Y, Lamzira Z, Thonart P, Chihib N, Peres C, Asehraou A. 2016. Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains. Grasas Aceites 67 (2), e138. https://doi.org/10.3989/gya.0759152

Golomb BL, Morales V, Jung A, Yau B, Boundy-Mills KL, Marco ML. 2013. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol. 33 (1), 97-106. https://doi.org/10.1016/j.fm.2012.09.004 PMid:23122507

Gómez AHS, García PG, Navarro LR. 2006. Trends in table olive production. Grasas Aceites 57, 86-94. https://doi.org/10.3989/gya.2006.v57.i1.18

Hurtado A, Reguant C, Bordons A, Rozes N. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol. 27 (6), 731-40. https://doi.org/10.1016/j.fm.2010.03.006 PMid:20630314

Landete JM, Curiel JA, Rodríguez H, De las Rivas B, Munoz R. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107 (1), 320-326. https://doi.org/10.1016/j.foodchem.2007.08.043

Marigo G. 1973. Sur une méthode de fractionnement et d'estimation des composés phénoliques chez les végétaux. Analysis 2 (2) 106-110.

Mateus T, Santo D, Saude C, Pires-Cabral P, Quintas C. 2016. The effect of NaCl reduction in the microbiological quality of cracked green table olives of the Macanilha Algarvia cultivar. Int. J. Food Microbiol. 218, 57-65. https://doi.org/10.1016/j.ijfoodmicro.2015.11.008 PMid:26613162

Meilgaard B, Civille M, Carr G. 1991. Sensory evaluation techniques. CRC Press Boca Raton FL.

Nicolas JJ, Richard-Forget FC, Goupy PM, Amiot MJ, Aubert SY. 1994. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 34 (2), 109-157. https://doi.org/10.1080/10408399409527653 PMid:8011143

Panagou EZ, Schillinger U, Franz CM, Nychas GJ. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 25 (2), 348-358. https://doi.org/10.1016/j.fm.2007.10.005 PMid:18206777

Pereira EL, Ramalhosa E, Borges A, Pereira JA, Baptista P. 2015. Yeast dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol. 46, 582-586. https://doi.org/10.1016/j.fm.2014.10.003 PMid:25475331

Peres C, Catulo L, Brito D, Pintado C. 2008. Lactobacillus pentosus DSM 16366 starter added to brine as freeze-dried and as culture in the nutritive media for Spanish style green olive production. Grasas Aceites 59 (3), 234-238. https://doi.org/10.3989/gya.2008.v59.i3.513

Pino A, De Angelis M, Todaro A, Van Hoorde K, Randazzo CL, Caggia C. 2018. Fermentation of Nocellara Etnea Table Olives by Functional Starter Cultures at Different Low Salt Concentrations. Front. Microbiol. 9, 1125. https://doi.org/10.3389/fmicb.2018.01125 PMid:29922251 PMCid:PMC5996112

Pino A, Vaccalluzzo A, Solieri L, Romeo FV, Todaro A, Caggia C, Arroyo López FN, Gallego JB, Randazzo CL. 2019. Effect of sequential inoculum of beta-glucosidase positive and probiotic strains on brine fermentation to obtain low salt table olives. Front. Microbiol. 10, 174. https://doi.org/10.3389/fmicb.2019.00174 PMid:30800110 PMCid:PMC6376858

Rodríguez-Gómez F, Romero-Gil V, Bautista-Gallego J, García-García P, Garrido-Fernández A, Arroyo-López FN. 2014. Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters. Food Microbiol. 44, 278-287. https://doi.org/10.1016/j.fm.2014.03.023 PMid:25084674

Rodriguez-Gomez F, Romero-Gil V, Bautista-Gallego J, Garrido-Fernandez A, Arroyo-Lopez FN. 2012. Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J. Microbiol. Biotechnol. 28 (4), 1761-1770. https://doi.org/10.1007/s11274-011-0990-1 PMid:22805958

Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Lamzira Z, Ben salah R, Saalaoui E, Ghabbour N, Asehraou A. 2021. Characterization of β-Glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J. Genet. Eng. Biotechnol. 19 (1), 1-14. https://doi.org/10.1186/s43141-021-00213-3 PMid:34370148 PMCid:PMC8353020

Saravanos E, Kagli D, Zoumpopoulou G, Panagou EZ, Tassou CC. Use of probiotic lactic acid bacteria as starter cultures in Spanish style green olive fermentation and determination of their survival using PFGE. Proceedings of the 21st International ICFMH Symposium, 1-4 September, 2008 Aberdeen, UK. p. 188.

Segovia-Bravo KA, Jarén-Galán M, García-García P, Garrido-Fernández A. 2009. Browning reactions in olives: Mechanism and polyphenols involved. Food Chem. 114 (4), 1380-1385. https://doi.org/10.1016/j.foodchem.2008.11.017

Sidari R, Martorana A, De Bruno A. 2019. Effect of brine composition on yeast biota associated with naturally fermented Nocellara messinese table olives. LWT 109, 163-170. https://doi.org/10.1016/j.lwt.2019.04.010

Tataridou M, Kotzekidou P. 2015. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157: H7 and Listeria monocytogenes. Int. J. Food Microbiol. 208, 122-130. https://doi.org/10.1016/j.ijfoodmicro.2015.06.001 PMid:26065729

Valenčić V, Bandelj Mavsar D, Bučar-Miklavčić M, Butinar B, Čadež N, Golob T, Raspor P, Smole Možina S. 2010. The impact of production technology on the growth of indigenous microflora and quality of table olives from Slovenian Istria. Food Technol. Biotechnol. 48 (3), 404-410.

Whitaker JR, Lee CY. 1995. Recent advances in chemistry of enzymatic browning: an overview. ACS Publications. https://doi.org/10.1021/bk-1995-0600.ch001

World Health Organization 2013. Global action plan for the prevention and control of noncommunicable diseases 2013-2020.

Yemenicioǧlu A, Cemeroǧlu B. 2003. Consistency of polyphenol oxidase (PPO) thermostability in ripening apricots (Prunus armeniaca L.): evidence for the presence of thermostable PPO forming and destabilizing mechanisms in apricots. J. Agric. Food Chem. 51 (8), 2371-2379. https://doi.org/10.1021/jf025988q PMid:12670183

Zinno P, Guantario B, Perozzi G, Pastore G, Devirgiliis C. 2017. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives. Food Microbiol. 63, 239-247. https://doi.org/10.1016/j.fm.2016.12.001 PMid:28040175

Published

2023-03-24

How to Cite

1.
Ghabbour N, Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Houmy N, El Yamani M, Ben Salah R, Ktari N, Saalaoui E, Asehraou A. Controlled fermentation of heat-shocked, unsalted and inoculated Moroccan Picholine green olives. Grasas aceites [Internet]. 2023Mar.24 [cited 2024Apr.24];74(1):e485. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1973

Issue

Section

Research

Funding data