Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives


  • N. Ghabbour Laboratory of Biology of Plants and Microorganisms, Department of Biology, Faculty of Sciences, University of Mohamed 1st
  • Z. Lamzira Laboratory of Biology of Plants and Microorganisms, Department of Biology, Faculty of Sciences, University of Mohamed 1st
  • P. Thonart Centre Wallon de Biologie Industrielle, Faculté universitaire des Sciences Agronomiques
  • P. Cidalia INIA/ITQB, New University of Lisbon
  • M. Markaoui Laboratory of Biochemistry, Department of Biology, Faculty of Sciences, University of Mohamed 1st
  • A. Asehraou Laboratory of Biology of Plants and Microorganisms, Department of Biology, Faculty of Sciences, University of Mohamed 1st



Fermentation, β-glucosidase, Lactic acid bacteria, Oleuropein, Olive


A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo- 4-chloro-3-indolyl β-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis.


Download data is not yet available.


Amiot M, Fleuriet A, Macheix J. 1986. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 34, 823-826. doi:10.1021/jf00071a014

Asehraou A, Faid M, Akhartouf R. 1993. Pure culture fermentation of green olives by lactobacilli strains. Microbiologie-Aliments-Nutrition 11, 221-228.

Ciafardini G, Marsilio V, Lanza B, Pozzi N. 1994. Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Appl. Environ. Microbiol. 60, 4142-4147. PMid:16349442    PMCid:201948

Fernandez-Diez MJ, Castro Ramos R, Garrido Fernandez A, Heredia Moreno A, Minguez Mosquera MI, Rejano Navarro L, Duran Quintana MC, Gonzalez Cancho F, Gomez Millan A, Garcia Garcia P, Sanchez Oldan F. 1985. Biotechnology of Table Olives. Instituto de la Grasa y sus Derivados, Sevilla, Spain.

Fleming HP, Walter WM, Etchells JL. 1973. Antimicrobial proprieties of oleuropein and products of its hydrolysis from green olives. J. Appl. Microbiol. 26, 777-782.

Gonzalez M, Zarzuelo A, Gamez MJ, Utrilla MP, Jimenez J, Osuna I. 1992. Hypoglycemic activity of olive leaf. Planta Med. 58, 513-515. doi:10.1055/s-2006-961538 PMid:1484890

Hansen K, Adsersen A, Christensen BS, Brooegger S, Rosendal JS, Nyman U, Wagner SU. 1996. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine 2, 319-324.

Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozes N. 2008. Microbial population dynamics during the processing of Arbequina table olives. Food Res. Int. 41, 738-744. doi:10.1016/j.foodres.2008.05.007

Kailis S, Harris D. 2007. Table olive processing: general aspects. In: Producing table olives. CSIRO publishing, Landlinks Press, Collingwood, Australia, pp. 131-189.

Kandler O, Weiss N. 1986. Regular, Nonsporing, Grampositive rods. In: Bergey’s Manual of Systematic Bacteriology. Ed: Sneath PHA, Mair NC, Sharpe ME, Holt JG. Vol. 2, William and Wilkins, Baltimore, pp. 1208-1234.

Landete JM, Curiel JA, Rodriguez H, de las Rivas B, Munoz R. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107, 320-326. doi:10.1016/j.foodchem.2007.08.043

Landete JM, Rodriguez H, de las Rivas B, Munoz R. 2007. High-added-value antioxidants obtained from the degradation of wine phenolics by Lactobacillus plantarum. J. Food Protect. 70, 2670-2675. PMid:18044455

Manna C, D’Angelo S, Migliardi V, Loffredi E, Mazzoni O, Morrica P, Galletti P, Zappia V. 2002. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J. Agric. Food Chem. 50, 6521-6526. doi:10.1021/jf020565+ PMid:12381144

Marsilio V, Lanza B, Pozzi N. 1996. Progress in table olive debittering: degradation in vitro of oleuropein and its derivatives by Lactobacillus plantarum. Journal of AOCS 73, 593-597. doi:10.1007/BF02518113

Marsilio V. Lanza B. 1998. Characterization of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J. of Sci. of Food and Agric. 76, 520-524. doi:10.1002/(SICI)1097-0010(199804)76:4<520::AID-JSFA982>3.0.CO;2-I

Mateos R, Espartero JL, Trujillo M, Rios JJ, Leon-Camacho M, Alcudia F, Cert A. 2001. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 49, 2185-2192. doi:10.1021/jf0013205 PMid:11368575

Medina E, Romero C, Castro A, Brenes M, Garcia A. 2008. Inhibitors of lactic acid fermentation in Spanishstyle green olive brines of the Manzanilla variety. Food Chem. 110, 932-937. doi:10.1016/j.foodchem.2008.02.084

Ordoudi SA, Tsimidou MZ. 2006. Crocin bleaching assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds. J. Agric. Food Chem. 54, 9347-9356. doi:10.1021/jf062115d PMid:17147417

Rodriguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FP, Cordoves CG, Mancheno JM, Munoz R. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132, 79-90. doi:10.1016/j.ijfoodmicro.2009.03.025 PMid:19419788

Rodriguez H, Landete JM, Curiel JA, de las Rivas B, Mancheno JM, Munoz R. 2008a. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748T. J. Agric. Food Chem. 56, 3068-3072. doi:10.1021/jf703779s PMid:18416556

Rodriguez H, Landete JM, de las Rivas B, Munoz R. 2008b. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem. 107, 1393-1398.

Rozes N, Peres C. 1996. Effect of oleuropein and sodium chloride on viability and metabolism of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 45, 839-843. doi:10.1007/s002530050771

Ruiz-Barba JL, Brenes-Balbuena M, Jimenez-Diaz R, Garcia-Garcia P, Garrido-Fernandez A. 1993. Inhibition of Lactobacillus plantarum by polyphenols extracted from two different kinds of olive brine. J. Appl. Microbiol. 74, 15-19. doi:10.1111/j.1365-2672.1993.tb02990.x

Sharpe ME, Fryer TF, Smith DG. 1979. Identification of lactic acid bacteria. In: Identification Methods for Microbiologists, Gibbs EM and Skiner F A (Eds), Academic Press, London, pp. 233-259.

Visioli F, Bellomo G, Montedoro G, Galli C. 1995. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituent. Atherosclerosis 117, 25-32. doi:10.1016/0021-9150(95)05546-9

Zarzuelo A, Duarte J, Jimenez J, Gonzales M, Utrilla M. P. 1991. Vasodilator effect of olive leaf. Planta Med. 57, 417-419. doi:10.1055/s-2006-960138 PMid:1798793




How to Cite

Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaoui M, Asehraou A. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas aceites [Internet]. 2011Mar.30 [cited 2024May30];62(1):84-9. Available from: