The influence of microwave roasting on bioactive components and chemical parameters of cold pressed fig seed oil




Fig seed oil, Microwave, Sterols, Tocopherols, Triacylglycerols


The effect of microwave roasting process on the compositional parameters and bioactive contents of fig seed oil were investigated. Fig seeds were ground and roasted in a microwave oven at 350, 460 and 600 Watt for 5 and 10 minutes and the roasted seeds were processed to obtain oil. The results showed that peroxide, K232 and K270 values were adversely affected by roasting. Fig seed oil was a prosperous source of γ-tocopherol and significant losses were observed due to microwave pre-treatment. The major fatty acids in fig seed oil were linolenic, linoleic and oleic acids; whereas the major triacylglycerols were LnLO, LnLnL, LnLnLn and LnLnO, according to fatty acid profile. The most abundant sterol in the fig seed oil samples was β-sitosterol with 3235.90 to 3625.62 mg/kg, followed by Δ5- and Δ7-avenasterols. The principal component analysis and agglomerative hierarchial clustering served to differentiate between intense and mild microwave-treated oils as well as the unroasted samples.


Download data is not yet available.


Ali MA, Nargis A, Othman NH, Noor AF, Sadik G, Hossen J. 2017. Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. Int. J. Food Prop. 20, 2569-2580.

AOCS 2003. Official and Recommended Methods of the American Oil Chemists' Society. AOCS Press, Champaign.

Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF. 2010. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 121, 1211-1215.

Azadmard-Damirchi S, Alirezalu K, Achachlouei BF. 2011. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 57, 72-75.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 52, 1487-1503. PMid:25017517

Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM, Farzaneh, V. 2017. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. In. Crop Prod. 97, 1-9.

Baygeldi N, Küçükerdönmez Ö, Akder RN, Çağındı, Ö. 2021. Medicinal and nutritional analysis of fig (Ficus carica) seed oil; A new gamma tocopherol and omega-3 source. Prog. Nutr. 23 (2), 1-6.

Duman E, Yazıcı AS. 2018. Physico-chemical properties of fresh fig (mor güz - sarı lop) seed and seed oil. Anadolu J. Aegean Agric. Res. Inst. 28, 69-76.

Đurđević S, Milovanović S, Šavikin K, Ristić M, Menković N, Pljevljakušić D, Bogdanović A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crop Prod. 104, 21-27.

Fathi-Achachlouei B, Azadmard-Damirchi S, Zahedi Y, Shaddel, R. 2019. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop Prod. 128, 527-533.

Ghafoor K, Özcan MM, Fahad AJ, Babiker EE, Fadimu GJ. 2019. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT-Food Sci. Technol. 99, 490-496.

Goszkiewicz A, Kołodziejczyk E, Ratajczyk F. 2020. Comparison of microwave and convection method of roasting sunflower seeds and its effect on sensory quality, texture and physicochemical characteristics. Food Struct. 25, 100144.

Güneşer BA, Yilmaz E. 2017. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils. Grasas Aceites 68, e175.

Güven N, Gökyer A, Koç A, Temiz NN, Selvi S, Koparal B, Erman C. 2019. Physiochemical composition of fig seed oil from Turkey. J. Pharm. Pharmacol. 7, 541-545.

Holčapek M, Lísa M, Jandera P, Kabátová N. 2005. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 28, 1315-1333. PMid:16138684

İçyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici, M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact. 11, 50-57.

IUPAC. 1987. International Union of Pure and Applied Chemistry. Standard methods for analysis of oils, fats and derivates (7th ed.), Method 2.301. Palo Alto, CA: Blackwell Scientific Publications.

Ji J, Liu Y, Shi L, Wang N, Wang X. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT-Food Sci. Technol. 101, 191-200.

Joseph B, Raj SJ. 2011. Pharmacognostic and traditional properties of Cissus quadrancularis Linn-An overview. Int. J. Pharm. Bio Sci. 2, 131-139.

Moreau RA. 2003. PIant SteroIs in FunctionaI Foods. Phytosterols as functional food components and nutraceuticals, 317.

Nakilcioğlu-Taş E. 2018. Biochemical characterization of fig (Ficus carica L.) seeds. J. Agric. Sci. 25, 232-237.

Ozcan MM, Al-Juhaimi FY, Ahmed IAM, Osman MA, Gassem MA. 2019. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 278, 190-196. PMid:30583361

Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Flaishman MA. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717-7723. PMid:17002444

Suri K, Singh B, Kaur A, Yadav MP, Singh N. 2020. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 326, 126974. PMid:32413759

Veberic R, Colaric M, Stampar F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106, 153-157.

WHO. 2008.World Health Organization. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper. 91. Rome: FAO.

Ye M, Zhou H, Hao J, Chen T, He Z, Wu F, Liu X. 2021. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds. Ind. Crop Prod. 161, 113193.

Yoshida H, Tomiyama Y, Hirakawa Y, Mizushina Y. 2006. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Compos. Anal. 19, 330-339.

Zhou Y, Fan W, Chu F, Pei D. 2016. Improvement of the flavor and oxidative stability of walnut oil by microwave pretreatment. J. Am. Oil Chem. Soc. 93, 1563-1572.



How to Cite

Deniz Şirinyıldız D, Yıldırım Vardin A, Yorulmaz A. The influence of microwave roasting on bioactive components and chemical parameters of cold pressed fig seed oil. Grasas aceites [Internet]. 2023Mar.24 [cited 2024May20];74(1):e490. Available from:




Funding data

Adnan Menderes Üniversitesi
Grant numbers MF-18022