Influencia del tostado por microondas en los componentes bioactivos y los parámetros químicos del aceite de semilla de higo prensado en frío

Autores/as

DOI:

https://doi.org/10.3989/gya.1011212

Palabras clave:

Aceite de semilla de higo, Esteroles, Microondas, Tocoferoles, Triacilgliceroles

Resumen


Se investigó el efecto del proceso de tostado por microondas sobre los parámetros de composición y contenido bioactivo del aceite de semilla de higo. Las semillas de higo se molieron y tostaron en un horno de microondas a 350, 460 y 600 vatios durante 5 y 10 minutos a continuación se obtuvo el aceite. Los resultados han demostrado que los valores de peróxido, K232 y K270 se vieron afectados negativamente por el tostado. El aceite de semilla de higo es una buena fuente de γ-tocoferol y se observaron pérdidas significativas mediante el pretratamiento con microondas. Los principales ácidos grasos del aceite de semilla de higo fueron los ácidos linolénico, linoleico y oleico; mientras que los principales triacilgliceroles fueron LnLO, LnLnL, LnLnLn y LnLnO que ratificaron el perfil de ácidos grasos. El esterol más abundante de las muestras de aceite de semilla de higo fue el β-sitosterol que varió de 3235,90 a 3625,62 mg/kg, acompañado de Δ5-avenasterol y Δ7-avenasterol. El análisis de componentes principales y la agrupación jerárquica aglomerativa permitieron la diferenciación de aceites tratados con microondas intensos y suaves, así como las muestras sin tostar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali MA, Nargis A, Othman NH, Noor AF, Sadik G, Hossen J. 2017. Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. Int. J. Food Prop. 20, 2569-2580. https://doi.org/10.1080/10942912.2016.1244544

AOCS 2003. Official and Recommended Methods of the American Oil Chemists' Society. AOCS Press, Champaign.

Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF. 2010. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 121, 1211-1215. https://doi.org/10.1016/j.foodchem.2010.02.006

Azadmard-Damirchi S, Alirezalu K, Achachlouei BF. 2011. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 57, 72-75.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 52, 1487-1503. https://doi.org/10.3109/13880209.2014.892515 PMid:25017517

Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM, Farzaneh, V. 2017. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. In. Crop Prod. 97, 1-9. https://doi.org/10.1016/j.indcrop.2016.12.005

Baygeldi N, Küçükerdönmez Ö, Akder RN, Çağındı, Ö. 2021. Medicinal and nutritional analysis of fig (Ficus carica) seed oil; A new gamma tocopherol and omega-3 source. Prog. Nutr. 23 (2), 1-6.

Duman E, Yazıcı AS. 2018. Physico-chemical properties of fresh fig (mor güz - sarı lop) seed and seed oil. Anadolu J. Aegean Agric. Res. Inst. 28, 69-76.

Đurđević S, Milovanović S, Šavikin K, Ristić M, Menković N, Pljevljakušić D, Bogdanović A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crop Prod. 104, 21-27. https://doi.org/10.1016/j.indcrop.2017.04.024

Fathi-Achachlouei B, Azadmard-Damirchi S, Zahedi Y, Shaddel, R. 2019. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop Prod. 128, 527-533. https://doi.org/10.1016/j.indcrop.2018.11.034

Ghafoor K, Özcan MM, Fahad AJ, Babiker EE, Fadimu GJ. 2019. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT-Food Sci. Technol. 99, 490-496. https://doi.org/10.1016/j.lwt.2018.10.017

Goszkiewicz A, Kołodziejczyk E, Ratajczyk F. 2020. Comparison of microwave and convection method of roasting sunflower seeds and its effect on sensory quality, texture and physicochemical characteristics. Food Struct. 25, 100144. https://doi.org/10.1016/j.foostr.2020.100144

Güneşer BA, Yilmaz E. 2017. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils. Grasas Aceites 68, e175. https://doi.org/10.3989/gya.0800162

Güven N, Gökyer A, Koç A, Temiz NN, Selvi S, Koparal B, Erman C. 2019. Physiochemical composition of fig seed oil from Turkey. J. Pharm. Pharmacol. 7, 541-545. https://doi.org/10.17265/2328-2150/2019.10.003

Holčapek M, Lísa M, Jandera P, Kabátová N. 2005. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 28, 1315-1333. https://doi.org/10.1002/jssc.200500088 PMid:16138684

İçyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici, M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact. 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8

IUPAC. 1987. International Union of Pure and Applied Chemistry. Standard methods for analysis of oils, fats and derivates (7th ed.), Method 2.301. Palo Alto, CA: Blackwell Scientific Publications.

Ji J, Liu Y, Shi L, Wang N, Wang X. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT-Food Sci. Technol. 101, 191-200. https://doi.org/10.1016/j.lwt.2018.11.008

Joseph B, Raj SJ. 2011. Pharmacognostic and traditional properties of Cissus quadrancularis Linn-An overview. Int. J. Pharm. Bio Sci. 2, 131-139.

Moreau RA. 2003. PIant SteroIs in FunctionaI Foods. Phytosterols as functional food components and nutraceuticals, 317. https://doi.org/10.1201/9780203913413.ch7

Nakilcioğlu-Taş E. 2018. Biochemical characterization of fig (Ficus carica L.) seeds. J. Agric. Sci. 25, 232-237. https://doi.org/10.15832/ankutbd.398268

Ozcan MM, Al-Juhaimi FY, Ahmed IAM, Osman MA, Gassem MA. 2019. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 278, 190-196. https://doi.org/10.1016/j.foodchem.2018.11.048 PMid:30583361

Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Flaishman MA. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717-7723. https://doi.org/10.1021/jf060497h PMid:17002444

Suri K, Singh B, Kaur A, Yadav MP, Singh N. 2020. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 326, 126974. https://doi.org/10.1016/j.foodchem.2020.126974 PMid:32413759

Veberic R, Colaric M, Stampar F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106, 153-157. https://doi.org/10.1016/j.foodchem.2007.05.061

WHO. 2008.World Health Organization. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper. 91. Rome: FAO.

Ye M, Zhou H, Hao J, Chen T, He Z, Wu F, Liu X. 2021. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds. Ind. Crop Prod. 161, 113193. https://doi.org/10.1016/j.indcrop.2020.113193

Yoshida H, Tomiyama Y, Hirakawa Y, Mizushina Y. 2006. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Compos. Anal. 19, 330-339. https://doi.org/10.1016/j.jfca.2004.10.004

Zhou Y, Fan W, Chu F, Pei D. 2016. Improvement of the flavor and oxidative stability of walnut oil by microwave pretreatment. J. Am. Oil Chem. Soc. 93, 1563-1572. https://doi.org/10.1007/s11746-016-2891-9

Publicado

2023-03-24

Cómo citar

1.
Deniz Şirinyıldız D, Yıldırım Vardin A, Yorulmaz A. Influencia del tostado por microondas en los componentes bioactivos y los parámetros químicos del aceite de semilla de higo prensado en frío. Grasas aceites [Internet]. 24 de marzo de 2023 [citado 23 de febrero de 2025];74(1):e490. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1974

Número

Sección

Investigación

Datos de los fondos

Adnan Menderes Üniversitesi
Números de la subvención MF-18022