Influencia del tostado por microondas en los componentes bioactivos y los parámetros químicos del aceite de semilla de higo prensado en frío
DOI:
https://doi.org/10.3989/gya.1011212Palabras clave:
Aceite de semilla de higo, Esteroles, Microondas, Tocoferoles, TriacilglicerolesResumen
Se investigó el efecto del proceso de tostado por microondas sobre los parámetros de composición y contenido bioactivo del aceite de semilla de higo. Las semillas de higo se molieron y tostaron en un horno de microondas a 350, 460 y 600 vatios durante 5 y 10 minutos a continuación se obtuvo el aceite. Los resultados han demostrado que los valores de peróxido, K232 y K270 se vieron afectados negativamente por el tostado. El aceite de semilla de higo es una buena fuente de γ-tocoferol y se observaron pérdidas significativas mediante el pretratamiento con microondas. Los principales ácidos grasos del aceite de semilla de higo fueron los ácidos linolénico, linoleico y oleico; mientras que los principales triacilgliceroles fueron LnLO, LnLnL, LnLnLn y LnLnO que ratificaron el perfil de ácidos grasos. El esterol más abundante de las muestras de aceite de semilla de higo fue el β-sitosterol que varió de 3235,90 a 3625,62 mg/kg, acompañado de Δ5-avenasterol y Δ7-avenasterol. El análisis de componentes principales y la agrupación jerárquica aglomerativa permitieron la diferenciación de aceites tratados con microondas intensos y suaves, así como las muestras sin tostar.
Descargas
Citas
Ali MA, Nargis A, Othman NH, Noor AF, Sadik G, Hossen J. 2017. Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. Int. J. Food Prop. 20, 2569-2580. https://doi.org/10.1080/10942912.2016.1244544
AOCS 2003. Official and Recommended Methods of the American Oil Chemists' Society. AOCS Press, Champaign.
Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF. 2010. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 121, 1211-1215. https://doi.org/10.1016/j.foodchem.2010.02.006
Azadmard-Damirchi S, Alirezalu K, Achachlouei BF. 2011. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 57, 72-75.
Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 52, 1487-1503. https://doi.org/10.3109/13880209.2014.892515 PMid:25017517
Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM, Farzaneh, V. 2017. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. In. Crop Prod. 97, 1-9. https://doi.org/10.1016/j.indcrop.2016.12.005
Baygeldi N, Küçükerdönmez Ö, Akder RN, Çağındı, Ö. 2021. Medicinal and nutritional analysis of fig (Ficus carica) seed oil; A new gamma tocopherol and omega-3 source. Prog. Nutr. 23 (2), 1-6.
Duman E, Yazıcı AS. 2018. Physico-chemical properties of fresh fig (mor güz - sarı lop) seed and seed oil. Anadolu J. Aegean Agric. Res. Inst. 28, 69-76.
Đurđević S, Milovanović S, Šavikin K, Ristić M, Menković N, Pljevljakušić D, Bogdanović A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crop Prod. 104, 21-27. https://doi.org/10.1016/j.indcrop.2017.04.024
Fathi-Achachlouei B, Azadmard-Damirchi S, Zahedi Y, Shaddel, R. 2019. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop Prod. 128, 527-533. https://doi.org/10.1016/j.indcrop.2018.11.034
Ghafoor K, Özcan MM, Fahad AJ, Babiker EE, Fadimu GJ. 2019. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT-Food Sci. Technol. 99, 490-496. https://doi.org/10.1016/j.lwt.2018.10.017
Goszkiewicz A, Kołodziejczyk E, Ratajczyk F. 2020. Comparison of microwave and convection method of roasting sunflower seeds and its effect on sensory quality, texture and physicochemical characteristics. Food Struct. 25, 100144. https://doi.org/10.1016/j.foostr.2020.100144
Güneşer BA, Yilmaz E. 2017. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils. Grasas Aceites 68, e175. https://doi.org/10.3989/gya.0800162
Güven N, Gökyer A, Koç A, Temiz NN, Selvi S, Koparal B, Erman C. 2019. Physiochemical composition of fig seed oil from Turkey. J. Pharm. Pharmacol. 7, 541-545. https://doi.org/10.17265/2328-2150/2019.10.003
Holčapek M, Lísa M, Jandera P, Kabátová N. 2005. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 28, 1315-1333. https://doi.org/10.1002/jssc.200500088 PMid:16138684
İçyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici, M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact. 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8
IUPAC. 1987. International Union of Pure and Applied Chemistry. Standard methods for analysis of oils, fats and derivates (7th ed.), Method 2.301. Palo Alto, CA: Blackwell Scientific Publications.
Ji J, Liu Y, Shi L, Wang N, Wang X. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT-Food Sci. Technol. 101, 191-200. https://doi.org/10.1016/j.lwt.2018.11.008
Joseph B, Raj SJ. 2011. Pharmacognostic and traditional properties of Cissus quadrancularis Linn-An overview. Int. J. Pharm. Bio Sci. 2, 131-139.
Moreau RA. 2003. PIant SteroIs in FunctionaI Foods. Phytosterols as functional food components and nutraceuticals, 317. https://doi.org/10.1201/9780203913413.ch7
Nakilcioğlu-Taş E. 2018. Biochemical characterization of fig (Ficus carica L.) seeds. J. Agric. Sci. 25, 232-237. https://doi.org/10.15832/ankutbd.398268
Ozcan MM, Al-Juhaimi FY, Ahmed IAM, Osman MA, Gassem MA. 2019. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 278, 190-196. https://doi.org/10.1016/j.foodchem.2018.11.048 PMid:30583361
Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Flaishman MA. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717-7723. https://doi.org/10.1021/jf060497h PMid:17002444
Suri K, Singh B, Kaur A, Yadav MP, Singh N. 2020. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 326, 126974. https://doi.org/10.1016/j.foodchem.2020.126974 PMid:32413759
Veberic R, Colaric M, Stampar F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106, 153-157. https://doi.org/10.1016/j.foodchem.2007.05.061
WHO. 2008.World Health Organization. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper. 91. Rome: FAO.
Ye M, Zhou H, Hao J, Chen T, He Z, Wu F, Liu X. 2021. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds. Ind. Crop Prod. 161, 113193. https://doi.org/10.1016/j.indcrop.2020.113193
Yoshida H, Tomiyama Y, Hirakawa Y, Mizushina Y. 2006. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Compos. Anal. 19, 330-339. https://doi.org/10.1016/j.jfca.2004.10.004
Zhou Y, Fan W, Chu F, Pei D. 2016. Improvement of the flavor and oxidative stability of walnut oil by microwave pretreatment. J. Am. Oil Chem. Soc. 93, 1563-1572. https://doi.org/10.1007/s11746-016-2891-9
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Adnan Menderes Üniversitesi
Números de la subvención MF-18022