Comparative chemistry and biological properties of the solid residues from hydrodistillation of Spanish populations of Rosmarinus officinalis L.

Authors

  • R. Sánchez-Vioque Centro Agrario de Albaladejito, Junta de Comunidades de Castilla-La Mancha - Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT)
  • M. E. Izquierdo-Melero Centro Agrario de Albaladejito, Junta de Comunidades de Castilla-La Mancha
  • M. Polissiou Agricultural University of Athens
  • K. Astraka Agricultural University of Athens
  • Petros A. Tarantilis Agricultural University of Athens
  • D. Herraiz-Peñalver Centro Agrario de Albaladejito, Junta de Comunidades de Castilla-La Mancha
  • M. Martín-Bejerano Centro Agrario de Albaladejito, Junta de Comunidades de Castilla-La Mancha
  • O. Santana-Méridas Centro Agrario de Albaladejito, Junta de Comunidades de Castilla-La Mancha - Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT)

DOI:

https://doi.org/10.3989/gya.1060142

Keywords:

Antifeedants, Antioxidants, Health-promoting compounds, Natural crop protectants, Phytotoxic activity, Residue valorization

Abstract


Solid residues from the hydrodistillation of selected Spanish populations of rosemary (Rosmarinus officinalis L.) have been analyzed for their polyphenol composition, and antioxidant and bioplaguicide activities. The objective was to evaluate and select the most suitable plant materials as sources of natural antioxidants and crop protectants. Total polyphenol content and polyphenol composition of rosemary populations were very dependent on the growth location: populations from Aranjuez showed a higher content of total polyphenols and were richer in rosmarinic acid as compared with their equivalent populations from Cuenca, whereas these latter were characterized by an overall higher content in genkwanin and carnosol. Most of the antioxidant activities were highly correlated with the total content of polyphenols although some polyphenols like carnosic acid and carnosol seemed to favor such activities. The extracts from R. officinalis were strong antifeedants against Leptinotarsa decemlineata Say and moderate against Spodoptera littoralis Boisd and Myzus persicae Sulzer, according to their feeding ecologies. The biological effects of the active samples cannot be accounted by their chemical composition, suggesting additive or synergistic effects. Both the phytotoxic and stimulating effects on Lactuca sativa L., and Lolium perenne L. leaf and/or root growth were observed.

Downloads

Download data is not yet available.

References

Angioni A, Barra A, Cereti E, Barile D, Coïson JD, Arlorio M, Dessi S, Coroneo V, Cabras P. 2004. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 52, 3530–3535. http://dx.doi.org/10.1021/jf049913t PMid:15161226

Boland DJ, Brophy JJ, House APN. 1991. Eucalyptus leaf oils: use, chemistry, distillation and marketing. Inkata Press, Melbourne/Sydney.

Borras-Linares I, Arráez-Román D, Herrero M, Ibá-ez E, Segura-Carretero A, Fernández-Gutiérrez A. 2011. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J. Chromatogr. A 1218, 7682–7690. http://dx.doi.org/10.1016/j.chroma.2011.07.021 PMid:21835416

Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I. 2001. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 64, 892–895. http://dx.doi.org/10.1021/np0100845 PMid:11473417

Burgue-o-Tapia E, Castillo L, González-Coloma A, Joseph-Nathan P. 2008. Antifeedant and phytotoxic activity of the sesquiterpene p-benzoquinone perezone and some of its derivatives. J. Chem. Ecol. 34, 766–771. http://dx.doi.org/10.1007/s10886-008-9495-2 PMid:18528728

Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94, 223–253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid:15246235

Carter P. 1971. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40, 450–458. http://dx.doi.org/10.1016/0003-2697(71)90405-2

Carrillo LC, Londo-o-Londo-o J, Gil A. 2014. Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res. Int. 60, 273–280. http://dx.doi.org/10.1016/j.foodres.2013.06.019

Cuvelier ME, Richard H, Berset C. 1996. Antioxidant activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73, 645–652. http://dx.doi.org/10.1007/BF02518121

Dittmer NT, Kanost MR. 2012. Insect multicopper oxidases: Diversity, properties, and physiological roles. Insect Biochem. Mol. Biol. 40, 179–188. http://dx.doi.org/10.1016/j.ibmb.2010.02.006 PMid:20219675

Fornoff F, Gross EM. 2014. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia, 175, 173–185. http://dx.doi.org/10.1007/s00442-013-2880-8 PMid:24429525

Guimarães-Araújo S, Amaral-Pinto ME, Lucca-Silva N, Leitedos Santos FJ, Fonsêca-Castro AH, Dos Santos-Lima LAR. 2013. Antioxidant and allelopathicactivities of extract and fractions from Rosmarinus officinalis. BBR 2, 35–43.

Henick AS, Benka MF, Mitchell JH Jr. 1954. Estimating carbonyl compounds in rancid fats and foods. J. Am. Oil Chem. Soc. 31, 88–91. http://dx.doi.org/10.1007/BF02612488

Herrero W, Plaza W, Cifuentes A, Ibá-ez E. 2010. Green processes for the extraction of bioactives from Rosemary: chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 1217, 2512–2520. http://dx.doi.org/10.1016/j.chroma.2009.11.032 PMid:19945706

Jian Y, Hai-Hong B, Yong-Zhu L, Mei Z, Zhong-Yu Z, Jian-Wen T. 2010. Phenolic compounds from Merremia umbellata subsp. orientalis and their allelopathic effects on Arabidopsis seed germination. Molecules 15, 8241–8250. http://dx.doi.org/10.3390/molecules15118241 PMid:21076390

Josuttis M, Verrall S, Stewart D, Kru.ger E, McDougall GJ. 2013. Genetic and environmental effects on tannin composition in Strawberry (Fragaria × ananassa) cultivars grown in different European locations. J. Agric. Food Chem. 61, 790–800. http://dx.doi.org/10.1021/jf303725g PMid:23301905

Julio LF, Martín L, Mu-oz R, Mainar AM, Urieta JS, Sanz J, Burillo J, González-Coloma A. 2014. Comparative chemistry and insect antifeedant effects of conventional (Clevenger and Soxhlet) and supercritical extracts (CO2) of two Lavandula luisieri populations. Ind. Crop. Prod. 58, 25–30. http://dx.doi.org/10.1016/j.indcrop.2014.03.021

Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I, Gerothanassis IP, Tzakos AG. 2013. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 136, 120–129. http://dx.doi.org/10.1016/j.foodchem.2012.07.091 PMid:23017402

Lattanzio V, Cardinali A, Linsalata V. 2012. Plant phenolics: A Biochemical and Physiological perspective, in Véronique C, Pascale SM, Quideau S (Eds.) Recent Advances in Polyphenols Research. Wiley-Blackwell, Oxford (UK), 1–39.

Li ZH, Wang Q, Ruan X, Pan CD, Juang DA. 2010. Phenolics and plant allelopathy. Molecules 15, 8933–8952. http://dx.doi.org/10.3390/molecules15128933 PMid:21139532

López-Iglesias B, Olmo M, Gallardo A, Villar R. 2014. Shortterm effects of litter from 21 woody species on plant growth and root development. Plant Soil 381, 177–191. http://dx.doi.org/10.1007/s11104-014-2109-6

Lubbe A, Verpoorte R. 2011. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crop. Prod. 34, 785–801. http://dx.doi.org/10.1016/j.indcrop.2011.01.019

Miguel MG. 2010. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Frag. J. 25, 291–312.

Moiteiro C, Joao M, Curto OM, Mohamed N, Bailen M, Martínez-Díaz R, González-Coloma A. 2006. Biovalorization of friedelane triterpenes derived from 10 cork processing industry byproducts. J. Agric. Food Chem. 54, 3566–3571. http://dx.doi.org/10.1021/jf0531151 PMid:19127726

Moctezuma C, Hammerbacher A, Heil M, Gershenson J, Méndez-Alonzo R, Oyama K. 2014. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J. Chem. Ecol. 40, 458–467. http://dx.doi.org/10.1007/s10886-014-0431-3 PMid:24809533

Navarrete A, Herrero M, Martín A, Cocero MJ, Ibá-ez E. 2011. Valorization of solid wastes from essential oil industry. J. Food Eng. 104, 196–201. http://dx.doi.org/10.1016/j.jfoodeng.2010.10.033

Oyaizu M. 1986. Studies on product browning reaction prepared from glucose amine. Jpn. J. Nut. 44, 307–315. http://dx.doi.org/10.5264/eiyogakuzashi.44.307

Poitut S, Bues S. 1970. Élevage de plusieurs espèces de Lepidopteres Noctuidae sur milieu artificiel simplifié. Ann. Zool. Ecol. Anim. 2, 79–91.

Rojht H, Košir IJ, Trdan S. 2012. Chemical analysis of three herbal extracts and observation of their activity against adults of Acanthoscelides obtectus and Leptinotarsa decemlineata using a video tracking system. J. Plant Dis. Prot. 119, 59–67.

Saiga A, Tanabe S, Nishimura T. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51, 3661–3667. http://dx.doi.org/10.1021/jf021156g PMid:12769542

Sánchez-Vioque R, Polissiou M, Astraka K, de los Mozos-Pascual M, Tarantilis P, Herraiz-Pe-alver D, Santana-Méridas O. 2013. Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind. Crop. Prod. 49, 150–155. http://dx.doi.org/10.1016/j.indcrop.2013.04.053

Santana-Méridas O, González-Coloma A, Sánchez-Vioque R. 2012. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 11, 447–466. http://dx.doi.org/10.1007/s11101-012-9266-0

Santana-Méridas O, Polissiou M, Izquierdo-Melero ME, Astraka K, Tarantilis PA, Herraiz-Pe-alver D, Sánchez- Vioque R. 2014. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crop. Prod. 59, 125–134. http://dx.doi.org/10.1016/j.indcrop.2014.05.008

Slinkard K, Singleton VL. 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic. 28, 49–55.

Van Acker S, Van den Berg DJ, Tromp M, Griffioen DH, Van Bennekom WP, Van der Vijgh W, Bast A. 1996. Structural aspects of antioxidant activity of flavonoids. Free Radical Biol. Med. 20, 331–342. http://dx.doi.org/10.1016/0891-5849(95)02047-0

Zhang Y, Smuts JP, Dodbiba E, Rangarajan R, Lang JC, Armstrong DW. 2012. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemaryextract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 60, 9305–9314. http://dx.doi.org/10.1021/jf302179c PMid:22881034

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559. http://dx.doi.org/10.1016/S0308-8146(98)00102-2

Published

2015-06-30

How to Cite

1.
Sánchez-Vioque R, Izquierdo-Melero ME, Polissiou M, Astraka K, Tarantilis PA, Herraiz-Peñalver D, Martín-Bejerano M, Santana-Méridas O. Comparative chemistry and biological properties of the solid residues from hydrodistillation of Spanish populations of Rosmarinus officinalis L. Grasas aceites [Internet]. 2015Jun.30 [cited 2024Apr.25];66(2):e079. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1544

Issue

Section

Research

Most read articles by the same author(s)