Diferenciación de acilgliceroles parciales derivados de diferentes grasas animales mediante técnicas de EA-IRMS y GCMS
DOI:
https://doi.org/10.3989/gya.0757152Palabras clave:
Acilgliceroles parciales, DAG, Derivados de grasas animales, EA-IRMS, GC-MS, MAGResumen
Se realizó un estudio para comparar acilgliceroles parciales de la manteca de cerdo con las de grasa de pollo, grasa de vacuno y grasa de cordero utilizando cromatografía de gases-espectrometría de masas (GC-MS) y análisis elemental de Isótopos-Espectrometría de Masas (EA-IRMS). Los mono- (MAG) y di- (DAG) acilgliceroles de grasas animales se prepararon mediante un método de glicerolisis química y se aislaron mediante cromatografía en columna. La composición de ácidos grasos y la relación isotópica de carbono δ13C de los MAG y DAG de las grasas de animales se determinan por separado para establecer sus características de identidad. Los resultados mostraron que los valores de δ13C de MAG y DAG de la manteca de cerdo fue significativamente diferente de los de MAG y DAG derivados de grasa de pollo, grasa de vacuno y grasa de cordero. De acuerdo con los diagramas de carga basados en el análisis de componentes principales (PCA), los ácidos grasos esteárico, oleico y linoleico fueron los parámetros más exigentes para identificar claramente MAG y DAG derivados de las diferentes grasas animales. Esto demuestra que EA-IRMS y PCA de los datos de ácidos grasos tienen un potencial considerable en discriminar MAG y DAG derivados de la manteca de cerdo frente a otras grasas animales para fines de autenticación Halal.
Descargas
Citas
AOCS. 2007. Official method and recommended practices of the American Oil Chemists' Society. 6th ed. American Oil Chemists' Society, Illinois.
AOAC. 2007. Official methods of analysis of AOAC International. 18th ed. Association of Official Analytical Chemists, Washington, DC.
De Man JM, Lipids, in Principles of Food Chemistry. (3rd edn.). Springer Science+Business Media, Inc. New York, 1999, pp. 33–110.
Destaillats F, Cruz-Hernandez C, Nagy K, Dionisi F. 2010. Identification of monoacylglycerol regio-isomers by gas chromatography-mass spectrometry. J. Chromatogr. 1217, 1543–1548. http://dx.doi.org/10.1016/j.chroma.2010.01.016 PMid:20097347
Gil JH, Hong JY, Jung JH, Hong, J. 2007. Structural determination of monoacylglycerols extracted from marine sponge by atom bombardment tadem mass spectrometry. Rapid Commun. Mass Spectrum. 21, 1264–1270.
Deng L, Nakano H, Iwasaki Y. 2008. Direct separation of monoacylglycerol isomers by enantioselective high-performance liquid chromatography. J. Chromatogr. A, 1198–1199, 67–72. http://dx.doi.org/10.1016/j.chroma.2008.03.095 PMid:18550069
Aursand M, Mabon F, Martin GJ. 2000. Characterization of farmed and wild salmon (Salmo salar) by a combined use of compositional and isotopic analyses. J. Am Oil Chem. Soc. 77, 659–666. http://dx.doi.org/10.1007/s11746-000-0106-5
Bianchi G, Angerosa F, Camera L, Reneiro F, Anglia C. 1993. Stable carbon isotope ratios (13C/12C) of olive oil components. J. Agric. Food Chem. 41, 1936–1940. http://dx.doi.org/10.1021/jf00035a024
Bojlul B, Monahan FJ, Moloney AP, Kiely PO, Scrimgeour CM, Schmidt, O. 2007. Alteration of the carbon and nitrogen stable isotope composition of beef by substitution of grass silage with maize silage. Rapid Commun. Mass Spectrom. 19, 1937–1942.
Cheng SF, Choo YM, Ma AN, Chuah CH. 2005. Rapid synthesis of palm-based monoacylglycerols. J. Am. Oil Chem. Soc. 82, 791–795. http://dx.doi.org/10.1007/s11746-005-1145-7
Cheong L.Z, Hong Z, Yuan X, Xuebing X. 2010. Physical characterization of lard partial acylglycerols and their effect on melting and crystallization properties of blends with rapeseed oil. J. Agric. Food Chem. 57, 5020–5027. http://dx.doi.org/10.1021/jf900665h PMid:19402640
Chesson L, Tipple BJ, Erkkila BR, Cerling TE, Ehleringer JR. 2011. B-HIVE: Beeswax hydrogen isotopes as validation of environment. Part I: Bulk honey and honeycomb stable isotope analysis. Food Chem. 125, 576–581. http://dx.doi.org/10.1016/j.foodchem.2010.09.050
Cordella CBY, Milit.o JSLT, Cl.ment MC, Cabrol-Bass D. 2003. Honey characterization and adulteration detection by pattern recognition applied on HPAEC-PAD profiles. 1. Honey floral species characterization. J. Agric. Food Chem. 51, 3234–3242. http://dx.doi.org/10.1021/jf021100m PMid:12744648
Indrasti D, Che Man Y, Chin ST, Mustafa S, Mat Hashim D, Abdul Manaf M. 2010. Regiospecific analysis of mono- and diglycerides in glycerolysis products by GCÅ~GC-TOF-MS. J. Am. Oil Chem. Soc. 87, 1255–1262. http://dx.doi.org/10.1007/s11746-010-1614-x
Kamal-Eldin A, Anderson R. 1997. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 74, 375–380. http://dx.doi.org/10.1007/s11746-997-0093-1
Kelly SD, Rhodes C. 2002. Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry. Grasas Aceites. 53, 34–44. http://dx.doi.org/10.3989/gya.2002.v53.i1.288
Kelly S, Parker I, Sharman M, Dennis J, Goodall, I. 1997. Assessing the authenticity of single seed vegetable oils using fatty acid stable carbon isotope ratios. Food Chem. 59, 181–186. http://dx.doi.org/10.1016/S0308-8146(96)00286-5
Liu X, Xu SP, Wang JH, Yuan JP, Guo LX, Li X, Huang XN. 2007. Characterization of ganoderma spore lipid by stable carbon isotope analysis: implications for authentication. Anal. Bioanal. Chem. 388, 723–731. http://dx.doi.org/10.1007/s00216-007-1270-7 PMid:17447054
Marikkar JMN, Yanty NAM. 2014. Effect of chemical and enzymatic modifications on the identity characteristics of lard-Review. Int. J. Food Prop. 17, 321–330. http://dx.doi.org/10.1080/10942912.2011.631251
Marikkar JMN, Lai OM, Ghazali HM, Che Man YB. 2001. Detection of lard and randomized lard as adulterants in RBD palm oil by differential scanning calorimetry. J. Am. Oil Chem. Soc. 78, 1113–1119. http://dx.doi.org/10.1007/s11746-001-0398-5
Naqiyah ANN, Marikkar JMN, Dzulkifly MH. 2013. Differentiation of lard, chicken fat, beef fat, and mutton fat by GCMS and EA-IRMS techniques. J. Oleo Sci. 63, 459–464.
Osorio MT, Moloney AP, Schmidt O, Monahan FJ. 2011. Multi element isotope analysis of bovine muscle for determination of international geographical origin of meat. J. Agric. Food Chem. 59, 3285–3294. http://dx.doi.org/10.1021/jf1040433 PMid:21391591
Riaz MN, Chaudary MM. 2004. Halal Food Production. pp. 1–379. Florida: CRC press.
Rezaei K, Temelli F. 2000. Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 77, 903–909. http://dx.doi.org/10.1007/s11746-000-0143-0
Shin EC, Craft BD, Pegg RB, Phillips RD, Eitenmiller RR. 2011. Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chem. 119, 1262–1270. http://dx.doi.org/10.1016/j.foodchem.2009.07.058
Simsek A, Bilsel M, Goren AC. 2012. 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chem. 130, 1115–1121. http://dx.doi.org/10.1016/j.foodchem.2011.08.017
Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RR, Hughes SI, Whittington FM. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343–358. http://dx.doi.org/10.1016/j.meatsci.2007.07.019 PMid:22062452
Yanty NAM, Marikkar JMN, Che Man YB, Long K. 2011. Composition and thermal analysis of lard stearin and lard olein. J. Oleo Sci. 60, 333–338. http://dx.doi.org/10.5650/jos.60.333 PMid:21701095
Sudraud G, Coustard JM, Retho C. 1981. Analytical and structural study of some food emulsifiers by high performance liquid chromatography and off line mass spectrometry. J. Chromatogr. 204, 397–406. http://dx.doi.org/10.1016/S0021-9673(00)81685-4
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.