Transesterificación catalizada por lipasa en aceite de soja epoxidado para preparar epoxi metil ésteres

Autores/as

DOI:

https://doi.org/10.3989/gya.1103172

Palabras clave:

Aceite de soja epoxidado, Epoxi metil ésteres, Lipasa, Productos de base biológica, Transesterificación

Resumen


Los ésteres metílicos de aceites de soja epoxidados pueden prepararse eficientemente mediante la transesterificación del aceite de soja epoxidado (ESBO) con una menor dosificación de metanol utilizando la lipasa Novozym 435 como catalizador. Los parámetros óptimos fueron los siguientes: relación molar 5:1 de metanol:ESBO, 5% de Novozym 435 como catalizador, 45 °C durante 14 h, velocidad de agitación de 600 rpm, bajo la cual los ésteres metílicos de aceites de soja epoxidados (ESBOME) pueden obtenerse con un rendimiento del 95,7%. Durante el proceso de transesterificación enzimática, los valores de oxígeno de oxirano se mantuvieron inalterables, lo que indicó que se logra una excelente estabilidad del grupo funcional en tales condiciones de reacción suaves. Además, se examinó la reciclabilidad de la enzima inmovilizada Novozym 435 en este proceso de transesterificación y los resultados mostraron que el biocatalizador podría reutilizarse durante diez veces sin perder ninguna actividad de reacción o selectividad. Los productos finales de ESBOME se identificaron por IR y análisis de RMN. Los datos cinéticos obtenidos siguieron el modelo de mecanismo Ping-Pong Bi (Vmax = 6,132 mol·L-1min-1, Km,S = 0,0001 mol·L-1, Km, A = 796,148 mol·L-1, Ki, A = 0,0004 mol·L-1) con inhibición competitiva por metanol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn K, Kraft S, Sun S. 2011. Chemical pathways of epoxidized and hydroxylated fatty acid methyl esters and triglycerides with phosphoric acid. J. Mater. Chem. 21, 9498-9505. https://doi.org/10.1039/c1jm10921a

Alhassan Y, Kumar N, Bugaje IM. 2015. Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts). J. Energy. Inst. 89, 683-693. https://doi.org/10.1016/j.joei.2015.05.003

Almeida VFD, García-Moreno PJ, Guadix A, Guadix EM. 2015. Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Process. Technol. 133, 152-160. https://doi.org/10.1016/j.fuproc.2015.01.041

Armylisas AHN, Hazirah MFS, Yeong SK, Hazimah AH. 2017. Modification of olefinic double bonds of unsaturated fatty acids and other vegetable oil derivatives via epoxidation: A review. Grasas Aceites 68, e174. https://doi.org/10.3989/gya.0684161

Bajaj A, Lohan P, Jha PN, Mehrotra R. 2010. Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B-Enzym. 62, 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018

Biermann U, Friedt W, Lang S, Lühs W.; Machmüller G, Metzger JO, Klaas MR, Shafer HJ, Schneider MP. 2008. Chapter 8. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. 253-289.

Campanella A, Rustoy E, Baldessari A, Baltanás MA. 2010. Lubricants from chemically modified vegetable oils. Biotechnol. Tech. 10, 1245-1254.

Gharat N, Rathod VK. 2013. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason. Sonochem. 20, 900-905. https://doi.org/10.1016/j.ultsonch.2012.10.011 PMid:23178034

Guldhe A, Singh B, Mutanda T, Permaul K, Bux F. 2015. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energ. Rev. 41, 1447-1464. https://doi.org/10.1016/j.rser.2014.09.035

Gutiérrez-Arnillas E, Álvarez MS, Deive FJ, Rodríguez A, Sanrom MA. 2016. New horizons in the enzymatic production of biodiesel using neoteric solvents. Renew. Energ. 98, 92-100. https://doi.org/10.1016/j.renene.2016.02.058

Holser RA. 2008. Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Ind. Crop Prod. 27, 130- 132. https://doi.org/10.1016/j.indcrop.2007.06.001

Hwang HS, Erhan SZ. 2001. Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J. Am. Oil Chem. Soc. 78, 1179-1184. https://doi.org/10.1007/s11745-001-0410-0

Ilmi M, Hommes A, Winkelman JGM, Hidayat C, Heeres HJ. 2016. Kinetic studies on the transesterification of sunflower oil with 1-butanol catalyzed by Rhizomucor miehei lipase in a biphasic aqueous-organic system. Biochem. Eng. J. 114, 110-118. https://doi.org/10.1016/j.bej.2016.06.026

Kai T, Mak GL, Wada S, Nakazato T, Takanashi H, Uemura Y. 2014. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization. Biotechnol. Tech. 163, 360-363.

Knothe, G. 2001. Characterization of esters of fatty acids and dicarboxylic acids with Guerbet alcohols. J. Am. Oil Chem. Soc. 78, 537-540. https://doi.org/10.1007/s11746-001-0299-7

Kwok Q, Acheson B, Turcotte R, Janès A, Marlair G. 2013. Fire and explosion hazards related to the industrial use of potassium and sodium methoxides. J. Hazard. Mater. 250-251, 484-490. https://doi.org/10.1016/j.jhazmat.2013.01.075 PMid:23507308

Lin YC, Hsu KH, Lin JF. 2014. Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst. Fuel 115, 306-311. https://doi.org/10.1016/j.fuel.2013.07.022

Liu W, Chen J, Liu RL, Bi YL. 2016. Revisiting the Enzymatic Epoxidation of Vegetable Oils by Perfatty Acid: Perbutyric Acid Effect on the Oil with Low Acid Value. J. Am. Oil Chem. Soc. 93, 1479-1486. https://doi.org/10.1007/s11746-016-2897-3

Martini DDS, Braga BA, Samios D. 2009. On the curing of linseed oil epoxidized methyl esters with different cyclic dicarboxylic anhydrides. Polym. 50, 2919-2925. https://doi.org/10.1016/j.polymer.2009.03.058

Mazo P, Rios L. 2013. Carbonation of Epoxidized Soybean Oil Improved by the Addition of Water. J. Am. Oil Chem. Soc. 90, 725-730. https://doi.org/10.1007/s11746-013-2214-3

Mustata F, Nita T, Bicu I. 2014. The curing reaction of epoxidized methyl esters of corn oil with Diels-Alder adducts of resin acids. The kinetic study and thermal characterization of crosslinked products. J. Anal. Appl. Pyrolysis, 108, 254- 264. https://doi.org/10.1016/j.jaap.2014.04.007

Pastore C, Barca E, Moro GD, Lopez A, Mininni G, Mascolo G. 2015. Recoverable and reusable aluminium solvated species used as a homogeneous catalyst for biodiesel production from brown grease. Appl. Catal. A: General. 501, 48-55. https://doi.org/10.1016/j.apcata.2015.04.031

Rosa CD, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV. 2009. Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour. Technol. 100, 5818-5826. https://doi.org/10.1016/j.biortech.2009.06.081 PMid:19616937

Sharma BK, Adhvaryu A, Liu ZS, Erhan SZ. 2006. Chemical modification of vegetable oils for lubricant applications. J. Am. Oil Chem. Soc. 83, 129-136. https://doi.org/10.1007/s11746-006-1185-z

Sharma YC, Singh B. 2010. A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Process. Technol. 91, 1267-1273. https://doi.org/10.1016/j.fuproc.2010.04.008

Silitonga AS, Masjuki HH, Hwai OC, Yusaf T, Kusumo F, Mahlia TMI. 2016. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: a comparative study. Ind. Crop. Prod. 85, 274- 286. https://doi.org/10.1016/j.indcrop.2016.03.017

Souza GK, Scheufele FB, Pasa TLB, Arroyo PA, Pereira NC. 2016. Synthesis of ethyl esters from crude macauba oil (Acrocomia aculeata) for biodiesel production. Fuel. 165, 360-366. https://doi.org/10.1016/j.fuel.2015.10.068

Trinh H, Yusup S, Uemura Y. 2018. Optimization and kinetic study of ultrasonic assisted esterification process from rubber seed oil. Bioresour. Technol. 247, 51-57. https://doi.org/10.1016/j.biortech.2017.09.075 PMid:28946094

Ullah K, Ahmad M, Sofia, Qiu FX. 2015. Assessing the experimental investigation of milk thistle oil for biodiesel production using base catalyzed transesterification. Energy 89, 887-895. https://doi.org/10.1016/j.energy.2015.06.028

Wu XD, Zhang XG, Yang SR, Chena Hg, Wang DP. 2000. The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. J. Am. Oil Chem. Soc. 77, 561-563. https://doi.org/10.1007/s11746-000-0089-2

Zhang KP, Lai JQ, Huang ZL, Yang Z. 2011. Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids. Biotechnol. Tech. 102, 2767-2772.

Zheng Y, Quan J, Ning X, Zhu LM, Jiang B, He ZY. 2009. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World J. Microbiol. Biotechnol. 25, 41-46. https://doi.org/10.1007/s11274-008-9858-4

Publicado

2018-06-30

Cómo citar

1.
Liu W, Duan F. Transesterificación catalizada por lipasa en aceite de soja epoxidado para preparar epoxi metil ésteres. Grasas aceites [Internet]. 30 de junio de 2018 [citado 22 de julio de 2024];69(2):e247. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1714

Número

Sección

Investigación