Características fisicoquímicas y estabilidad oxidativa del aceite de germen de maíz egipcio producido por extracción enzimática acuosa

Autores/as

DOI:

https://doi.org/10.3989/gya.0112181

Palabras clave:

Aceite de germen de maíz, Celulasa fúngica, Propiedades antioxidantes y oxidativas, Propiedades fisicoquímicas, Proteasa bacteriana, Proteasa bovina

Resumen


Las propiedades fisicoquímicas y la estabilidad oxidativa del aceite de germen de maíz egipcio producido por extracción enzimática acuosa utilizando celulasas fúngicas, proteasas bacterianas y bovinas, ya sea individualmente o en combinación, se compararon con las extraídas con hexano. Las condiciones óptimas de la nueva proteasa bovina para un rendimiento máximo de aceite fueron: 0,1% enzima, pH 7.5 y tiempo de incubación 1h versus 0,6%, 0,63% enzima, pH 4; 8,2 y 4; 2h de incubación para celulasa fúngica y proteasa bacteriana, respectivamente. El mayor rendimiento de aceite se obtuvo combinando celulasa con proteasa bacteriana (62,38%) o con proteasa bovina (51,94%) en relación con la extracción de hexano (100%). El índice de refracción, yodo, saponificación y los valores de peróxido, la actividad de eliminación de DPPH, así como la composición de ácidos grasos de los aceites extraídos enzimáticamente y los extraídos con disolventes fueron comparables. El índice de acidez y el índice de color de los aceites extraídos con enzimas fueron mejores que los obtenidos con el hexano, lo que indica que las enzimas podrían aplicarse en la producción de aceite de maíz ecológico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anjum F, Anwar F, Jamil A, Iqbal M. 2006. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. J. Am. Oil Chem. Soc. 83, 777–784. https://doi.org/10.1007/s11746-006-5014-1

Anwar F, Ashraf M, Bhanger MI. 2005. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc. 82, 45–51. https://doi.org/10.1007/s11746-005-1041-1

AOAC, 2005. Official Methods of Analysis of the Association of Official Analytical Chemists. 18th Ed., Gaithersburg, USA.

AOCS, 2005 in: Firestone D. (Edn.), Official Methods and Recommended Practices of the American Oil Chemists' Society, AOCS Press, Champaign, IL. Methods Cd 1–25, Cd 3a-63, Cd 3–25 and Cd 8–53.

Balvardi M, Rezaei K, Mendiola JA, Ibá-ez E. 2015. Optimization of the aqueous enzymatic extraction of oil from Iranian wild almond. J. Am. Oil Chem. Soc. 92, 985– 992. https://doi.org/10.1007/s11746-015-2671-y

Barminas JT, James MK, Abubakar UM. 1999. Chemical composition of seeds and oil of Xylopia Aethiopica grown in Nigeria. Plant Food Hum. Nutr. 53, 193–198. https://doi.org/10.1023/A:1008028523118 PMid:10517278

Bender DA. 2009. A dictionary of food and nutrition. 3 rd edition, Oxford university press.

Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200. https://doi.org/10.1038/1811199a0

Bocevska M, Karlovi? D, Turkulov J, Pericin D. 1993. Quality of corn germ oil obtained by aqueous enzymatic extraction. J. Am. Oil Chem. Soc. 70, 1273–1277. https://doi.org/10.1007/BF02564241

Brehm BJ, Lattin BL, Summer SS, Boback JA, Gilchrist GM, Jandacek RJ, D'alessio DA. 2009. One-year comparison of a high–monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 32, 215–220. https://doi.org/10.2337/dc08-0687 PMid:18957534 PMCid:PMC2628682

Burlakova EB, Alesenko AV, Molochkina EM, Palmina NP, Khrapova NG. 1975. Bioantioxidants in radiation damage and malignant growth. Moscow: Nauka (in Russian).

Calder PC. 2013. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. Br. J. Clin. Pharmacol. 75, 645–662. https://doi.org/10.1111/j.1365-2125.2012.04374.x PMid:22765297 PMCid:PMC3575932

Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484. https://doi.org/10.1016/j.bbalip.2014.08.010 PMid:25149823

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety 5, 169–186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O'Reilly ME. 2015. Monounsaturated fatty acid– enriched high-fat diets impede adipose NLRP3 inflammasome–mediated IL-1? secretion and insulin resistance despite obesity. Diabetes 64, 2116–2128. https://doi.org/10.2337/db14-1098

Formo MW, Jungermann E, Norris FA, Sonntag NOV. 1979. Baily's Oil and Fat Products. 4th edn. by D.Swern, Interscience Publishers, New York, USA. PMid:90581

Huang AH. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiology 110, 1055–1061. https://doi.org/10.1104/pp.110.4.1055 PMid:8934621 PMCid:PMC160879

Johnston DB, McAloon AJ, Moreau RA, Hicks KB, Singh V. 2005. Composition and economic comparison of germ fractions from modified corn processing technologies. J. Am. Oil Chem. Soc. 82, 603–608. https://doi.org/10.1007/s11746-005-1116-z

Kowalski B, Ratusz K, Kowalska D, Bekas W. 2004. Determination of the oxidative stability of vegetable oils by differential scanning calorimetry and Rancimat measurements. Eur. J. Lipid Sci. Technol. 106, 165–169. https://doi.org/10.1002/ejlt.200300915

Lamas DL, Crapiste GH, Constenla DT. 2014. Changes in quality and composition of sunflower oil during enzymatic degumming process. LWT - Food Sci. Technol. 58, 71–76.

Latif S, Anwar F. 2009. Effect of aqueous enzymatic processes on sunflower oil quality. J. Am. Oil Chem. Soc. 86, 393– 400. https://doi.org/10.1007/s11746-009-1357-8

Latif S, Anwar F. 2011. Aqueous enzymatic sesame oil and protein extraction. Food chem. 125, 679–684. https://doi.org/10.1016/j.foodchem.2010.09.064

Mehanni AES, El-Reffaei WHM, Melo A, Casal S, Ferreira IM. 2017. Enzymatic Extraction of Oil from Balanites Aegyptiaca (Desert Date) Kernel and Comparison with Solvent Extracted Oil. J. Food Biochem. 41.

Mojtaba A, Fardin K. 2013. Optimization of enzymatic extraction of oil from Pistacia Khinjuk seeds by using central composite design. Food Sci. Technol.º 1, 37–43.

Moral PS, Méndez MVR. 2006. Production of pomace olive oil. Grasas Aceites 57, 47–55.

Moreau RA, Dickey LC, Johnston DB, Hicks KB. 2009. A process for the aqueous enzymatic extraction of corn oil from dry milled corn germ and enzymatic wet milled corn germ (E-Germ). J. Am. Oil Chem. Soc. 86, 469–474. https://doi.org/10.1007/s11746-009-1363-x

Moreau RA, Johnston DB, Dickey LC, Parris N, Hicks KB. 2007. Aqueous enzymatic oil extraction: a ''green'' bioprocess to obtain oil from corn germ and other oil-rich plant materials, in: Eggleston G, Vercellotti JR (eds). ºThe industrial application of enzymes on carbohydrate based materials. American Oil Chemists' Society Press, Champaign, 101–120.

Moreau RA, Johnston DB, Powell MJ, Hicks KB. 2004. A comparison of commercial enzymes for the aqueous enzymatic extraction of corn oil from corn germ. J. Am. Oil Chem. Soc. 81, 1071–1075. https://doi.org/10.1007/s11746-004-1023-3

Pearson D. 1976. Chemical Analysis of Foods. 7th Edn., Church Hill Livingstone, London, UK, 72–73,138–143, 488–496.

Pons WA, Kuck JC, Frampton VL. 1960. Color index for cottonseed oils. J. Am. Oil Chem. Soc. 37, 671–673. https://doi.org/10.1007/BF02632095

Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635. PMid:9729602 PMCid:PMC98927

Shende D, Sidhu EK. 2014. Methods Used for Extraction of Maize (Zea Mays L.) Germ Oil-A Review. Ind. J. Sci. Res. and Tech. 2, 48–54.

Tirzitis G, Bartosz G. 2010. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochimica Polonica 57, 139–142. PMid:20454707

Turan S, Topcu A, Karabulut I, Vural H, Hayaloglu AA. 2007. Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. J. Agric. Food Chem. 55, 10787–10794. https://doi.org/10.1021/jf071801p PMid:18038980

Wirasnita R, Hadibarata T, Novelina YM, Yusoff ARM, Yusop Z. 2013. A modified methylation method to determine fatty acid content by gas chromatography. Bull. Korean Chem. Soc. 34, 3239–3242. https://doi.org/10.5012/bkcs.2013.34.11.3239

Xie M, Dunford NT, Goad C. 2011. Enzymatic extraction of wheat germ oil. J. Am. Oil Chem. Soc. 88, 2015–2021. https://doi.org/10.1007/s11746-011-1861-5

Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50, 1619–1624. https://doi.org/10.1021/jf010964p PMid:11879046

Publicado

2018-12-30

Cómo citar

1.
Esmat AY, Hassan RE, Abo-ElWafa GA, Abou-ElSoud MM, Megahed MG. Características fisicoquímicas y estabilidad oxidativa del aceite de germen de maíz egipcio producido por extracción enzimática acuosa. Grasas aceites [Internet]. 30 de diciembre de 2018 [citado 22 de julio de 2024];69(4):e275. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1743

Número

Sección

Investigación