Composición, propiedades, estabilidad y comportamiento térmico del aceite de semilla de tamarindo (Tamarindus indica)
DOI:
https://doi.org/10.3989/gya.0928182Palabras clave:
Aceite de semilla de tamarindo, Ácido lignocérico, DSC, Tamarindus indica, TGAResumen
La composición, estabilidad y comportamiento térmico del aceite de semilla de tamarindo (Tamarindus indica) fueron analizadas con el fin de contribuir al conocimiento de sus potenciales usos. El aceite fue extraído del núcleo de la semilla con hexano y analizado mediante sus principales propiedades físicas, químicas y térmicas mediante espectrometría infrarroja, cromatografía de gases, espectroscopia de masas, calorimetría (DSC) y termogravimetría (TGA). Los resultados mostraron que las semillas del tamarindo tuvieron un contenido de aceite de 3,76 ± 0,20%, con un índice de saponificación de 174,80 ± 9,87mg KOH/g y ácidos grasos mayoritarios: Lignocérico (20,15%), oleico (18,99%), palmítico (11,99%) y en cantidades menores los ácidos esteárico, behénico, linoleico y araquídico, entre otros. El análisis mediante TGA y DSC mostró que la temperatura inicial de descomposición del aceite fue de 224,1 °C en una sola etapa en atmósfera inerte y en atmósfera de aire fue a 218 °C en tres etapas. El aceite mostró curvas de cristalización y fusión con un solo máximo, iniciándose y finalizando estos cambios de fase a 20,16 y -38,8 °C, and -22,2 y 28,6 °C, respectivamente. Estas propiedades mostraron que el aceite de la semilla de tamarindo tiene potenciales aplicaciones en alimentos y productos farmacológicos y cosméticos.
Descargas
Citas
Adewuyi A, Oderinde RA, Rao BVSK, Prasad RBN, Nalla M. 2011. Proximate analysis of the seeds and chemical composition of the oils of Albizia saman, Millettia griffonianus and Tamarindus indica from Nigeria. Annals: Food Sci. Technol. 12, 123-129.
Ajayi IA, Oderinde RA, Kajogbola DO, Uponi JI. 2006. Oil content and fatty acid composition of some underutilized legumes from Nigeria. Food Chem. 99, 115-120. https://doi.org/10.1016/j.foodchem.2005.06.045
Akhtar KA, Bokadia MM, Mehta BK, Batra KA. 1986. Chemical characterization and antimicrobial activity of some seed oils of Cruciferae family. Grasas Aceites 37, 148-151.
Andriamanantena RW, Artaud J, Gaydou EM, Iatrides MC, Chevalier JL. 1983. Fatty acid and sterol compositions of malagasy tamarind kernel oils. J. Am. Oil Chem. Soc. 60, 1318-1321. https://doi.org/10.1007/BF02702108
Anu SJ, Rao JM. 2001. Oxanthrone esters from the aerial parts of Cassia kleinii. Phytochemistry 57, 583-585. https://doi.org/10.1016/S0031-9422(01)00114-5
Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. 2011. Tamarindus indica: Extent of explored potential. Pharmacogn. Rev. 5, 73-81. https://doi.org/10.4103/0973-7847.79102 PMid:22096321 PMCid:PMC3210002
Borugadda VB, Goud VV. 2014. Thermal, oxidative and low temperature properties of methyl esters prepared from oils of different fatty acids composition: A comparative study. Thermochim. Acta 577, 33-40. https://doi.org/10.1016/j.tca.2013.12.008
Caluwé E de, Halamová K, Van Damme P. 2010. Tamarindus indica L.: A review of traditional uses, phytochemistry and pharmacology. Afrika Focus 23, 53-83. https://doi.org/10.21825/af.v23i1.5039
El-Siddig K, Gunasena HPM, Prasa BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, Williams JT. 2006. Tamarind - Tamarindus indica L. Fruits for the future. 1. Southampton Centre for Underutilized Crops, Southampton, U.K, 188 p.
Fretts AM, Mozaffarian D, Siscovick DS, Djousse L, Heckbert SR, King IB, McKnight B, Sitlani C, Sacks FM, Song X, Sotoodehnia N, Spiegelmann D, Wallace ER, Lemaitre RN. 2014. Plasma phospholipid saturated fatty acids and incident atrial fibrillation: The cardiovascular health study. J. Am. Heart Assoc. 3, 1-10. https://doi.org/10.1161/JAHA.114.000889 PMid:24970268 PMCid:PMC4309088
Hondelmann W, Radatz W. 1982. Fatty-acids in seed-oils of European wild plants-a starting-point for developing industrial crops? Fett Wiss. Technol. 84, 73-75. https://doi.org/10.1002/lipi.19820840207
Horwitz W. 1995. Official methods of analysis of the Association of Official Analytical Chemists. AOAC Washington DC, US.
Kumar CS, Bhattacharya S. 2008. Tamarind seed: Properties, processing and utilization. Crit. Rev. Food Sci. 48, 1-20. https://doi.org/10.1080/10408390600948600 PMid:18274963
Lambelet P, Raemy A. 1983. Iso-solid diagrams of fat blends from thermal analysis data. J. Am. Oil Chem. Soc. 60, 845-847. https://doi.org/10.1007/BF02787442
Lemaitre RN, King IB, Rice K, McKnight B, Sotoodehnia N, Rea TD, Johnson CO, Raghunathan TE, Cobb LA, Mozaffarian D, Siscovick DS. 2014. Erythrocyte very long-chain saturated fatty acids associated with lower risk of incident sudden cardiac arrest. Prostag. Leukotr. Ess. 91, 149-153. https://doi.org/10.1016/j.plefa.2014.07.010 PMid:25107579 PMCid:PMC4156887
Lemaitre RN, Fretts AM, Sitlani CM, Biggs ML, Mukamal K, King IB, Song X, Djoussé L, Siscovick DS, McKnigth B, Sotoodehnia N, Kizer JR, Mozaffarian D. 2015. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: The cardiovascular health study. Am. J. Clin. Nutr. 101, 1047-1054. https://doi.org/10.3945/ajcn.114.101857 PMid:25787996 PMCid:PMC4409688
Melzer M, Blin J, Bensakhria A, Valette J, Broust F. 2013. Pyrolysis of extractive rich agroindustrial residues. J. Anal. Appl. Pyrol. 104, 448-460. https://doi.org/10.1016/j.jaap.2013.05.027
Morad MM, El Magoli SB, Sedky KA. 1978. Physicochemical properties of Egyptian tamarind seed oil. Fett Wiss. Technol. 80, 357- 359. https://doi.org/10.1002/lipi.19780800906
O'Brien RD. 2008. Fats and oils: formulating and processing for applications. CRC press. https://doi.org/10.1201/9781420061673
OriginLab. 2007. Origin Pro 8 SRO. OriginLab Corporation. Northampton, MA, US.
Pitke PM, Singh PP, Srivastava HC. 1977. Fatty acid composition of Tamarind kernel oil. J. Am. Oil Chem. Soc. 54, 592-592. https://doi.org/10.1007/BF03027644
Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. 2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299-3305. https://doi.org/10.1194/jlr.M009449 PMid:20671299 PMCid:PMC2952570
Rabelo SN, Ferraz VP, Oliveira LS, Franca AS. 2015. FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. Int. J. Environment. Sci. Develop.6, 964-969. https://doi.org/10.7763/IJESD.2015.V6.730
Rao AS, Kumar AA, Ramana MV. 2015. Tamarind seed processing and by-products. Agric. Eng. Int.: CIGR J. 17, 200-204.
Rasala TM, Kale VV, Lohiya GK, Moharir KS, Ittadwar AM, Awari JG. 2011. Chemistry and pharmaceutical applications of excipients derived from tamarind. Asian J. Chem. 23, 1421-1423.
Reddy SG, Rao JMS, Achyuta Ramayya D, Azeemoddin G, Rao TSD.1979. Extraction, characteristics and fatty acid composition of tamarind kernel oil. J. Oil Technol. Assoc. India. 11, 91-93.
Roos YH, 2016. Phase transitions in foods. Academic Press.
Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RH. 2015. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol. 28, 42-55. https://doi.org/10.1159/000360009 PMid:25196193
Shahidi F, Wanasundara PKJPD. 2002. Extraction and analysis of lipids. In: Food Lipids, Chemistry, Nutrition, and Biotechnology. Marcel Dekker, Inc. NY. US. https://doi.org/10.1201/9780203908815.ch5
Santos JCO, Santos IMG, Conceiç?o MM, Porto SL, Trindade MFS, Souza AG, Prassad S, Fernandez VJ, Araújo A. 2004. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 75, 419-428. https://doi.org/10.1023/B:JTAN.0000027128.62480.db
Solís-Fuentes J, Ayala-Tirado RA, Fernández-Suárez AF, Durán-de Bazúa MC. 2015. Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior. Grasas Aceites 66 (1), e056. https://doi.org/10.3989/gya.0691141
Spitzer V, Marx F, Maia JGS, Pfeilsticker K. 1990. Curupira tefeensis (Olacaceae) - A rich source of very long-chain fatty-acids. Fett Wiss. Technol. 92, 165-168. https://doi.org/10.1002/lipi.19900920410
Sultana R, Gulzar T. 2012. Proximate analysis of Adenanthera pavonina L. seed oil, a source of lignoceric acid grown in Pakistan. J. Am. Oil Chem. Soc. 89, 1611-1618. https://doi.org/10.1007/s11746-012-2073-3
Tan CP, Che Man YB. 2000. Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. J. Am. Oil Chem. Soc.77, 143-155. https://doi.org/10.1007/s11746-000-0024-6
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.