Fast screening of turkish olive oil by NMR spectroscopy for geographical determination and discrimination purposes
DOI:
https://doi.org/10.3989/gya.122413Keywords:
Geographical origin, 1H DOSY NMR, 1H NMR quantitative analysis, Olive oil, Sub-fraction determinationAbstract
The main goal of this study is to rapidly screen olive oil contents by acquiring one dimensional (1D) 1H NMR spectra of 38 samples from Turkey, The Middle East, and Libya. The quantitative analysis of the 1H NMR helped in distinguishing the geographical origin of the olive oil samples. The intensity of 1H NMR variables was submitted to the statistical method, analysis of variance (ANOVA). As a result of combining the NMR data and ANOVA, olive oils were discriminated based on regional origin rather than province. This less time consuming discriminative screening by 1H NMR does not require any further analysis of the olive oil, including oxidative stability measurements or gas chromatography. The possibility of determining authenticity, even in an olive growing area of a small village was also shown. The two-dimensional (2D) non-invasive 1H DOSY NMR experiment, known as “NMR chromatography”, was used to determine the olive oil sub-fraction.
Downloads
References
Alonso-Salces RM, Moreno-Rojas JM, Holland MV, Reniero F, Heberger K. 2010a. Virgin olive oil authentication by multivariate analyses of 1H NMR fingerprints and d13C and d2H data. J. Agric. Food Chem. 58, 5586–5596. http://dx.doi.org/10.1021/jf903989b PMid:20373822
Alonso-Salces RM, Heberger K, Holland MV, Moreno-Rojas JM, Mariani C, Bellan G, Reniero F, Guillou C. 2010b. Multivariate analysis of NMR fingerprint of the unsaponifable fraction of virgin olive oils for authentification purposes. Food Chem. 118, 956–965. http://dx.doi.org/10.1016/j.foodchem.2008.09.061
Altun A, Ok S. 2012. NMR analyses and diffusion coefficient determination of minor constituents of olive oil: combined experimental and theoretical studies. J. Chem. Eng. Data 57, 2619–2624. http://dx.doi.org/10.1021/je300804s
Andjelkovic M, Acun S, Van Hoed V, Verhe R, Van Camp J. 2009. Chemical composition of Turkish olive oil-Ayvalik. J. Am. Oil Chem. Soc. 86, 135–140. http://dx.doi.org/10.1007/s11746-008-1330-y
Arslan D, Schreiner M. 2012. Chemical characteristics and antioxidant activity of olive oils from Turkish varieties grown in Hatay province. Sci. Horticul. 144, 141–152. http://dx.doi.org/10.1016/j.scienta.2012.07.006
Arslan D. 2012. Physico-chemical characteristics of olive fruits of Turkish varieties from the province of Hatay. Grasas Aceites 63, 158–166. http://dx.doi.org/10.3989/gya.071611
Ballesteros E, Sánchez AG, Martos NR. 2006. Simultaneous multidetermination of residues of pesticides and polycyclic aromatic hydrocarbons in olive and olive-pomace oils by gas chromatography/tandem mass spectrometry. J. Chrom. A 1111, 89–96. http://dx.doi.org/10.1016/j.chroma.2006.01.101 PMid:16480730
Degirmencioglu N. 2011. Influence of temperature and modified atmosphere on the chemical profile of packed Gemlik dry-salted olives. J. Food Safety 31, 115–124. http://dx.doi.org/10.1111/j.1745-4565.2010.00274.x
D'Imperio M, Mannina L, Capitani D, Bidet O, Rossi E, Bucarelli FM, Quaglia GB, Segre A. 2007. NMR and statistical study of olive oils from Lazio: A geographical, ecological and agronomic characterization. Food Chem. 105, 1256 –1267. http://dx.doi.org/10.1016/j.foodchem.2007.02.045
Guillén MD, Ruiz A. 2001. High resolution 1H nuclear magnetic resonance in the study of edible oils and fats. Trends Food Sci. Tech. 12, 328–338. http://dx.doi.org/10.1016/S0924-2244(01)00101-7
Gurdeniz G, Ozen B, Tokatli F. 2008. Classification of Turkish olive oils with respect to cultivar, geographic origin and harvest year, using fatty acid profile and mid-IR spectroscopy. Eur. Food Res. Technol. 227, 1275–1281. http://dx.doi.org/10.1007/s00217-008-0845-7
Hatzakis E, Koidis A, Boskou D, Dais P. 2008. Determination of phospholipids in olive oil by 31P NMR spectroscopy. J. Agric. Food Chem. 56, 6232–6240. http://dx.doi.org/10.1021/jf800690t PMid:18598039
Ilyasoglu H, Ozcelik B, Van Hoed V, Verhe R. 2010. Characterization of Aegean olive oils by their minor compounds. J. Am. Oil Chem. Soc. 87, 627–636. http://dx.doi.org/10.1007/s11746-009-1538-5
Isik N, Doganlar S, Frary A. 2011. Genetic diversity of Turkish olive varieties assessed by simple sequence repeat and sequence-related amplified polymorphism markers. Crop Sci. 51, 1646–1654. http://dx.doi.org/10.2135/cropsci2010.11.0625
Mannina L, Sobolev AP. 2011. High resolution NMR characterization of olive oils in terms of quality, authenticity and geographical origin. Magn. Reson. Chem. 49, S3–S11. http://dx.doi.org/10.1002/mrc.2856 PMid:22290707
Mannina L, Segre A. 2002. High resolution nuclear magnetic resonance: From chemical structure to food authenticity. Grasas Aceites 53, 22–33. http://dx.doi.org/10.3989/gya.2002.v53.i1.287
Ocakoglu D, Tokatli F, Ozen B, Korel F. 2009. Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chem. 113, 401–410. http://dx.doi.org/10.1016/j.foodchem.2008.07.057
Rocco A, Fanali S. 2009. Analysis of phytosterols in extravirgin olive oil by nano-liquid chromatography. J. Chrom. A 1216, 7173–7178. http://dx.doi.org/10.1016/j.chroma.2009.03.081 PMid:19386314
Sacchi R, Mannina L, Fiordiponti P, Barone P, Paolillo L, Patumi M, Segre A. 1998. Characterization of Italian extra virgin olive oils using 1H-NMR spectroscopy. J. Agric. Food Chem. 46, 3947–3951. http://dx.doi.org/10.1021/jf970666l
Sacchi R, Addeo F, Paolillo L. 1997. 1H and 13C NMR of virgin olive oil. An overview. Magn. Res. in Chem. 35, 133–145. http://dx.doi.org/10.1002/(SICI)1097-458X(199712)35:13<S133::AID-OMR213>3.0.CO;2-K
Sacchi R, Patumi M, Fontanazz G, Barone P, Fiordiponti P, Mannina L, Rossi E, Segre AL. 1996. A High-Field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. J. Am. Oil Chem. Soc. 73, 747–758. http://dx.doi.org/10.1007/BF02517951
Sacco A, Brescia MA, Liuzzi V, Reniero F, Guillo C, Ghelli S, van der Meer P. 2000. Characterization of Italian olive oils based on analytical and nuclear magnetic resonance determinations. J. Am. Oil Chem. Soc. 77, 619–625. http://dx.doi.org/10.1007/s11746-000-0100-y
Segre AL, Mannina L. 1997. 1H NMR study of edible oils. Rec. Res. Dev. Oil Chem. 1, 297–308.
Socha AM, Kagan G, Li W, Hopson R, Sello JK, Williard PG. 2010. Diffusion coefficient-formula weight correlation analysis via diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY NMR) to examine acylglycerol mixtures and biodiesel production. Energy Fuels 24, 4518–4521. http://dx.doi.org/10.1021/ef100545a
Tanilgan K, Ozcan MM, Unver A. 2007. Physical and chemical characteristics of five Turkish olie (Olea europea L.) varieties and their oils. Grasas Aceites 58, 142–147.
Tsuda M, Yasudo T, Fukushi E, Kawabata J, Sekiguchi M, Fromont J, Kobayashi J. 2006. Agesamides A and B, bromopyrrole alkaloids from sponge agelas species: application of DOSY for chemical screening of new metabolites. Org. Lett. 8, 4235–4238. http://dx.doi.org/10.1021/ol061464q. http://dx.doi.org/10.1021/ol061464q
Zamora R, Alba V, Hidalgo FJ. 2001. Use of high-resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. J. Am. Oil Chem. Soc. 78, 89–94. http://dx.doi.org/10.1007/s11746-001-0225-z
Zeiner M, Steffan I, Cindric IJ. 2005. Determination of trace elements in olive oil by ICP-AES and ETA-AAS: A pilot study on the geographical characterization. Microchem. J.81, 171–176. http://dx.doi.org/10.1016/j.microc.2004.12.002
Website of Turkish Meteorology Institute indicating the relative humidity map, updated daily: http://www.dmi.gov.tr/tarim/nem-tahmini.aspx.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.