Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon


  • M. F.G. Santos Instituto de Pesquisas Científicas e Tecnológicas do Amapá
  • R. E. Alves Embrapa Agroindustria Tropical
  • M. Roca Instituto de la Grasa-CSIC



Astrocaryum vulgare, Bactris gasipaes, HPLC-carotenoids, Mauritia flexuosa, Maximiliana maripa, Oenocarpus vacaba, Palm oils


The oils obtained from native palm fruits are considered new sources of high added value phytochemicals, making it necessary to know the composition of the less studied species in order to evaluate their economic potential. The objective of this study is to identify and quantify the arotenoids in palm fruit oils from the Brazilian Amazon: bacaba (Oenocarpus bacaba), buriti (Mauritia flexuosa), inajá (Maximiliana maripa), pupunha (Bactris gasipaes) and tucumã (Astrocaryum vulgare), by means of liquid phase extraction and HPLC-UV-vis. analysis. The results showed an extremely variable carotenoid content, from 13 mg·kg−1 in bacaba oil to more than 1000 mg·kg−1 in the tucumã one. The oils obtained from buriti, pupunha and tucumã displayed high concentrations of ß-carotene, corresponding to fruits with the series ß, ß dominant metabolism. Upon analyzing the carotenoid profile in bacaba oil for the first time, an extraordinary dominance of the ß, ε pathway was observed, proving them to be oils with high lutein and α-carotene contents. Although the ß, ß pathway dominates in inajá oil, the exclusive and high lycopene content implies that LCY-E is barely active in these fruits, in contrast to what has been evidenced so far. It is therefore of the utmost importance to characterize these new potential sources of carotenoids.


Download data is not yet available.


AENOR (1991) Norma UNE 55-062-80 para la determinación del materias grasas en semillas oleaginosas. Catálogo de Normas UNE, Madrid.

Ambrosio CLB, Campos FACS, Faro ZP. 2006. Carotenóides como alternativa contra a hipovitaminose A. Revista Nutrição 19, 233–243.

Anjo DLC. 2004. Alimentos funcionais em angiologia e cirurgia vascular. J. Vascular Brasileiro, 3, 145–154.

Bereau D, Benjelloun-Mlayah B, Banoub J, Bravo R. 2003. FA and unsaponifiable composition of five Amazinian palm kernel oils. J. Am. Oil Chem. Soc. 80, 49–53.

Clement CR, Lleras Pérez E, Van Leeuwen J. 2005. O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociências 9, 67–71.

Ferreira BS, Almeida CG, Faza LP, Almeida A, Diniz AG, Silva VC, Grazul RM, Le Hyaric M. 2011. Comparative Properties of Amazonian Oils Obtained by Different Extraction Methods. Molecules 16, 5875–5885. PMid:21750480

Ferreira de Franc L, Reber G, Meireles AA, Machado NT, Brunner G. 1999. Supercritical extraction of carotenoids and lipids from buriti (Mauritia flexuosa), a fruit from the Amazon region. J. Supercrit. Fluids, 14, 247–256.

Filho OCS, Sagrillo MR, Garcia LFM, Machado AK, Cadona F, Ribeiro EE, Duarte EEMF, Morel AF, da Cruz IVM. 2013. The In Vitro Genotoxic Effect of Tucuma (Astrocaryum aculeatum), an Amazonian Fruit Rich in Carotenoids. J. Medicinal Food, 16, 1013–1021. PMid:24236575

Jatunov S, Quesada S, Díaz C, Murillo E. 2010. Carotenoid composition and antioxidant activity of the rawand boiled fruit mesocarp of six varieties of Bactris gasipaes. Arch. Latinoam. Nutr. 60, 99–104. PMid:21090177

Khachik F, Beecher GR, Whittaker NF. 1986. Separation, identification, and quantification of themajor carotenoid and chlorophyll constituents inextracts of several green vegetables by liquid chro-matography. J. Agric. Food Chem. 34, 603–616.

Mambrin MCT, Barrera-Arellano D. 1997. Caracterización de aceites de frutos de palmeras de la región amazonica del Brasil. Grasas Aceites 48, 154–158.

Manorama R, Rukmini C. 1991. Effect of processing on β-carotene retention in crude palm oil and its products. Food Chem. 42, 253–264.

Souza LM, Ferreira KS, Chaves JBP, Teixeira SL. 2008. L-Ascorbic acid, β-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles. Sci. Agric. 65, 246–250.

Mínguez-Mosquera MI, Gandul-Rojas B, Monta-o-Asquerino A, Garrido-Fernández J. 1991. Determination of chlorophylls and carotenoides by HPLC during olive lactic fermentation. J. Chromatogr. 585, 259–266.

Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo-Guerrero L. 1992. Rapid method of quantification of chlorophylls ands carotenoides in virgin olive oil by HPLC. J. Agric. Food Chem. 40, 60–63.

Mínguez-Mosquera MI, Hornero-Méndez D. 1993. Separation and quantification of the carotenoid pigments in red peppers (Capsicumannuum L.), paprika, and oleoresin by reversed-phase HPLC. J. Agric. Food Chem. 41, 1616–1620.

Montúfar R, Laffargue A, Pintaud J, Hamon S, Avallone S, Dussert S. 2010. Oenocarpus bataua Mart. (Arecaceae): rediscovering a source of high oleic vegetable oil from Amazonia. J. Am. Oil Chem. Soc. 87, 167–172.

Perkins-Veazie P, Collins JK, Davis AR, Roberts W. 2006. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 54, 2593–2597. PMid:16569049

Roca M, Mínguez-Mosquera MI. 2003. Carotenoid levels during the period of growth and ripening in fruits of different olive varieties (Hojiblanca, Picual and Arbequina). J. Plant Physiol. 160, 451–459. PMid:12806772

Rodrigues AMC, Darnet S, Silva LHM. 2010. Fatty Acid profiles tocopherol of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inajá (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 21, 2000–2004.

Rodriguez-Amaya DB. 1996. Assessment of the Provitamin A Contents of Foods-The Brazilian Experience. J. Food Compos. Anal. 9, 196–230.

Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J. 2008. Updated Brazilian database on food carotenoids: Factors affecting carotenoidcomposition. J. Food Compos. Anal. 21, 445–463.

Rosso VV, Mercadante AZ. 2007. Identification and quantification of carotenoides, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem. 55, 5062–5072. PMid:17530774

Santos MFG, Marmesat S, Brito ES, Alves RE, Dobarganes MC. 2013. Major components in oils obtained from Amazonian palm fruits. Grasas Aceites 64, 328–334.

Telles M. 2006. Determinação de tocoferóis e carotenóides emfrutas amazônicas: Implantação de uma metodologia. Tesis Doctoral. Universidade Federal do Pará, Centro Tecnológico,Ciência e Tecnologia de Alimentos, Belém.

Uenojo M, Maróstica Junior MR, Pastore GM. 2007. Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma. Química Nova 30, 616–622.

Vásquez-Ocnín PG, Alvarado LF, Solís VC, Torres RP, Mancini-Filho J. 2010. Chemical characterizacion and oxidative stability of the oils from three morphotypes of Mauritia flexuosa L. f, from the Peruvian Amazon. Grasas Aceites 61, 390–397.

Yuyama LKO, Aguiar JPL, Yuyama K, Clement CR, Macedo SHM, Fávaro DIT, Afonso C, Vasconcellos MBA, Pimentel SA, Badolato ESG, Vannucchi H. 2003. Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in central Amazonia, Brazil. Int. J. Food Sci. Nutr. 54, 49–56. PMid:12701237



How to Cite

Santos MF, Alves RE, Roca M. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. grasasaceites [Internet]. 2015Sep.30 [cited 2022Nov.28];66(3):e086. Available from:




Most read articles by the same author(s)