Catalyst-free production of fatty acid ethyl esters (FAEE) from macauba pulp oil

Authors

DOI:

https://doi.org/10.3989/gya.0103201

Keywords:

Acrocomia aculeate, Catalyst-free, Continuous, Ethanol

Abstract


In this study, the production of fatty acid ethyl esters (FAEE) from macauba pulp oil and pressurized ethanol was investigated. The experiments were conducted without the addition of catalyst, at 20 MPa, to determine the effect of temperature (200 to 300 °C) and the oil to ethanol mass ratio (1:1 and 1:2) on the FAEE content and different residence times (10 to 45 min). The effect of the addition of n-hexane to the oil (20 wt%) as a co-solvent was also evaluated. The use of high temperatures (275 and 300 °C) resulted in high FAEE content (∼90%). Increasing the amount of ethanol in the reaction medium contributed to the formation of esters only at operating temperatures of 200 to 250 °C. It was also observed that with the addition of co-solvent (in the oil) it was possible to obtain high amounts of FAEE in a shorter reaction time. In addition, a low content of unreacted compounds (∼8.0%) and the conversion of ∼90 and 99% of the free fatty acids and triglycerides were observed, respectively.

Downloads

Download data is not yet available.

References

Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G. 2012. Current biodiesel production technologies : A comparative review. Energ. Convers. and Manage. 63, 138-148. https://doi.org/10.1016/j.enconman.2012.02.027

Abdala ACDA, Colonelli TADS, Trentini CP, Oliveira JV, Cardozo-Filho L, Silva EA, Silva C. 2014a. Effect of additives in the reaction medium on noncatalytic ester production from used frying oil with supercritical ethanol. Ener. Fuels 283122-3128. https://doi.org/10.1021/ef402253e

Abdala AC, Garcia VA, Trentini CP, Cardozo- Filho L, Silva EA, Silva C. 2014b. Continuous Catalyst-Free Esterification of Oleic Acid in Compressed Ethanol. Int. J. Chem. Eng. 2014, 1-5. https://doi.org/10.1155/2014/803783

Akkarawatkhoosith N, Kaewchada A, Jaree A. 2019a. Enhancement of continuous supercritical biodiesel production : influence of co-solvent types. Enrgy Proced. 156, 48-52. https://doi.org/10.1016/j.egypro.2018.11.085

Akkarawatkhoosith N, Kaewchada A, Jaree A. 2019b. Production of Biodiesel from Palm Oil under Supercritical Ethanol in the Presence of Ethyl Acetate. Energ. Fuel 33, 5322-5331. research-article. https://doi.org/10.1021/acs.energyfuels.9b00641

Akkarawatkhoosith N, Kaewchada A, Jaree A. 2019c. Simultaneous development of biodiesel synthesis and fuel quality via continuous supercritical process with reactive co-solvent. Fuel 237, 117-125. https://doi.org/10.1016/j.fuel.2018.09.077

American Oil Chemists' Society. Standard Methods for the Analysis of Oils, Fats and Derivatives, International Union of Pure and Applied Chemistry Commission on Oils, Fats and Derivatives § (1990).

Bezerra FWF, Costa WA, Oliveira MS, Andrade HÁ, Carvalho JRN. 2018. Transesterification of palm pressed-fibers (Elaeis guineensis Jacq.) oil bysupercriticalfluid carbon dioxide with entrainer ethanol. J. Supercrit. Fluids 136, 136-143. https://doi.org/10.1016/j.supflu.2018.02.020

Colonelli TADS, Trentini CP, Santos KA, Oliveira JV, Cardozo-Filho L, Silva EA, Silva C. 2017. Assessment of process variables on the use of macauba pulp oil as feedstock for the continuous production of ethyl esters under pressurized conditions. Braz. J. Che. Eng. 34, 831-839. https://doi.org/10.1590/0104-6632.20170343s20150768

Costa WA, Bezerra FWF, Oliveira MS, Andrade HA, Santos APM, Cunha VMB, Junior RN. 2019. Supercritical CO2 extraction and transesterification of the residual oil from

industrial palm kernel cake with supercritical methanol. J. Supercrit. Fluids, 147, 179-187.

Demirbas A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energ. Convers. and Manage. 43, 2349-2356. https://doi.org/10.1016/S0196-8904(01)00170-4

Đokić-Stojanović1 DR, Todorović ZB, Troter DZ, Stamenković OS, Veselinović LM, Zdujić MV, Manojlović DD, Veljković VB. 2019. Influence of various co-solvents on the calcium oxide-catalyzed ethanolysis of sunflower oil. J. Serbian Chem. Soc. 84, 253-265. https://doi.org/10.2298/JSC180827007D

Doná G, Cardozo-Filho L, Silva C, Castilhos F. 2013. Biodiesel production using supercritical methyl acetate in a tubular packed bed reactor. Fuel Process. Technol. 106, 605-610. https://doi.org/10.1016/j.fuproc.2012.09.047

Evaristo AB, Grossi JAS, Pimentel LD, Goulart SDM, Martins AD, Santos VL, Motoike S. 2016. Harvest and post-harvest conditions influencing macauba (Acrocomia aculeata) oil quality attributes. Ind. Crops. Prod. 85, 63-73. https://doi.org/10.1016/j.indcrop.2016.02.052

Farobie O, Matsumura Y. 2017. State of the art of biodiesel production under supercritical conditions. Prog. Energy. Combust. Sci. 63, 173-203. https://doi.org/10.1016/j.pecs.2017.08.001

Go AW, Sutanto S, NguyenThi BT, Cabatingan LK, Ismadji S, Ju Y. 2014. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions. Energ. Convers. Manag. 88, 1159-1166. https://doi.org/10.1016/j.enconman.2014.03.014

Jesus AA, Souza DF, Oliveira JA, Deus MS, Silva MG, Franceschi E, Dariva C. 2018. Mathematical modeling and experimental esterification at supercritical conditions for biodiesel production in a tubular reactor. Energ. Convers. Manag. 171, 1697-1703. https://doi.org/10.1016/j.enconman.2018.06.108

Kusdiana D, Saka S. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol. 91, 289-295. https://doi.org/10.1016/S0960-8524(03)00201-3

Lescano CH, Oliveira IP, Silva LR, Baldivia DS, Sanjinez-Argandonã, EJ, Arruda EJ, Lima FF. 2015. Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd . fruits. Afr. J. Food Sci. 9, 113-119. https://doi.org/10.5897/AJFS2014.1212

Lim S, Lee K. 2013. Influences of different cosolvents in simultaneous supercritical extraction and transesterification of Jatropha curcas L . seeds for the production of biodiesel. Chem. Eng. J. 221, 436-445. https://doi.org/10.1016/j.cej.2013.02.014

Liu J, Nan Y, Huang X, Bond JQ, Tavlarides LL. 2018. Applied Catalysis B: Environmental Continuous esteri fi cation of oleic acid to ethyl oleate under sub / supercritical conditions over γ-Al2O3. Appl. Catal. B 232, 155-163. https://doi.org/10.1016/j.apcatb.2018.03.050

Maçaira J, Santana A, Costa A, Ramirez E, Larrayoz MA. 2014. Process Intensification Using CO2 As Cosolvent under Supercritical Conditions Applied to the Design of Biodiesel Production. Ind. Eng. Chem. Res. 5 3, 3985-3995. https://doi.org/10.1021/ie402657e

Mardhiah HH, Chyuan H, Masjuki HH, Lim S, Pang YL. 2017. Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energ. Convers. and Manage. 144, 10-17. https://doi.org/10.1016/j.enconman.2017.04.038

Mello BTF, Gonçalves JE, Rodrigues GM, Cardozo-Filho L, Silva C. 2017. Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Ind. Crops Prod. 97, 110-119. https://doi.org/10.1016/j.indcrop.2016.12.014

Muppaneni T, Reddy HK, Ponnusamy S, Patil PD, Sun Y, Dailey P, Deng S. 2013. Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent : A response surface methodology approach. Fuel 107, 633-640. https://doi.org/10.1016/j.fuel.2012.11.046

Musa IA. 2016. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 25, 21-31. https://doi.org/10.1016/j.ejpe.2015.06.007

Nan Y, Liu J, Lin R, Tavlarides LL. 2015. Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: Process optimization. J. Supercrit. Fluids 97, 174-182. https://doi.org/10.1016/j.supflu.2014.08.025

Nunes ÂA, Buccini DF, Jaques JAS, Portugal LC, Guimarães RCA, Favaro SP, Carvalho CME. 2018. Effect of Acrocomia aculeata Kernel Oil on Adiposity in Type 2 Diabetic Rats. Plant. Foods Hum. Nutr. 73, 61-67. https://doi.org/10.1007/s11130-017-0648-8 PMid:29177992

Ortiz-Martínez VM, Salar-García MJ, Palacios-Nereo FJ, Olivares-Carrillo P, Quesada-Medina J, Ríos APDL, Hernández-Fernández FJ. 2016. In-depth study of the transesterification reaction of Pongamia pinnata oil for biodiesel production using catalyst-free supercritical methanol process. J. Supercrit. Fluids 113, 23-30. https://doi.org/10.1016/j.supflu.2016.03.009

Osmieri L, Esfahani RAM, Recasens F. 2017. Continuous biodiesel production in supercritical two-step process: phase equilibrium and process design. J. Supercrit. Fluids 124, 57-71. https://doi.org/10.1016/j.supflu.2017.01.010

Patil PD, Deng S. 2009. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88, 1302-1306. https://doi.org/10.1016/j.fuel.2009.01.016

Pinnarat T, Savage PE. 2010. Noncatalytic esterification of oleic acid in ethanol. J. Supercrit. Fluids, 53, 53-59. https://doi.org/10.1016/j.supflu.2010.02.008

Postaue N, Trentini CP, Mello BTF, Cardozo- Filho L, Silva C. 2019. Continuous catalystfree interesterification of crambe oil using methyl acetate under pressurized conditions. https://doi.org/10.1016/j.enconman.2019.03.046

Energ. Convers. and Manage. 187, 398-406.

Santos KC, Hamerski F, Voll FAP, Corazza ML. 2018. Experimental and kinetic modeling of acid oil (trans)esterification in supercritical ethanol. Fuel 224, 489-498. https://doi.org/10.1016/j.fuel.2018.03.102

Santos PR, Pedersen FA, Ramos LP, Corazza ML. 2017. Esterification of fatty acids with supercritical ethanol in a continuous tubular reactor. J. Supercrit. Fluids 126, 25-36. https://doi.org/10.1016/j.supflu.2017.03.002

Sawangkeaw R, Bunyakiat K, Ngamprasertsith S. 2011. Continuous production of biodiesel with supercritical methanol : Optimization of a scale-up plug fl ow reactor by response surface methodology. Fuel Process. Technol. 92, 2285-2292. https://doi.org/10.1016/j.fuproc.2011.07.014

Silva C, Castilhos F, Oliveira JV, Cardozo-Filho L, Trentin CM, Lima AP, Oliveira JV. 2010. Continuous production of soybean biodiesel with compressed ethanol in a microtube reactor. Fuel Process. Technol. 91, 1274-1281. https://doi.org/10.1016/j.fuproc.2010.04.009

Silva C, Colonelli TAS, Silva EA, Cabral VF, Oliveira JV, Cardozo-Filho L. 2014. Continuous catalyst-free production of esters from Jatropha curcas L. oil under supercritical ethanol. Braz. J. Chem. Eng. 31727-735. https://doi.org/10.1590/0104-6632.20140313s00002709

Silva C, Oliveira JV. 2014. Biodiesel production through non-catalytic supercritical transesterification: Current state and perspectives. Braz. J. Chem. Eng. 31, 271-285. https://doi.org/10.1590/0104-6632.20140312s00002616

Silva C, Weschenfelder T, Rovani S, Corazza FC, Corazza ML, Dariva C, Oliveira JV. 2007. Continuous Production of Fatty Acid Ethyl Esters from Soybean Oil in Compressed Ethanol. Ind. Eng. Chem. Res. 46, 5304-5309. https://doi.org/10.1021/ie070310r

Soto G, Hegel P, Pereda S. 2014. Supercritical production and fractionation of fatty acid esters and acylglycerols. J. Supercrit. Fluids 93, 74-81. https://doi.org/10.1016/j.supflu.2014.04.017

Standard UNE-EN 14105. 2003. Determinación de los contenidos de glicerol libre y total y de mono-, di- y triglicéridos. Madrid, Spain. Srivastava G, Paul AK, Goud VV. 2018. Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. Energy. Conver. Manag. 156, 269-278. https://doi.org/10.1016/j.enconman.2017.10.093

Tobar M, Núñez GA. 2018. Supercritical transeterification of microalgae triglycerides for biodiesel production: Effect of alcohol type and co-solvent. J. Supercrit. Fluids 137, 50-56. https://doi.org/10.1016/j.supflu.2018.03.008

Trentin CM, Lima AP, Alkimim IP, Silva C, Castilhos F, Mazutti MA, Oliveira JV. 2011. Continuous production of soybean biodiesel with compressed ethanol in a microtube reactor using carbon dioxide as co-solvent. Fuel Process. Technol. 92, 952-958. https://doi.org/10.1016/j.fuproc.2010.12.016

Trentini CP, Fonseca JM, Cardozo-Filho L, Reis R, Sampaio SC, Silva C. 2018. Assessment of continuous catalyst-free production of ethyl esters from grease trap waste. J. Supercrit. Fluids 136, 157-163. https://doi.org/10.1016/j.supflu.2018.02.018

Trentini CP, Postaue N, Cardozo-Filho L, Reis RR, Sampaio SC, Silva C. 2019. Production of esters from grease trap waste lipids under supercritical conditins: Effect of water addition on ethanol. J. Supercrit. Fluids 147, 16. https://doi.org/10.1016/j.supflu.2019.02.008

Vieitez I, Irigaray B, Casullo P, Pardo MJ, Grompone MA, Jachmanián I. 2012. Effect of free fatty acids on the efficiency of the supercritical ethanolysis of vegetable oils from different origins. Energy. and Fuels 26, 1946-1951. https://doi.org/10.1021/ef201977s

Vieitez I, Silva C, Alckmin I, Borges GR, Corazza FC, Oliveira JV, Jachmanián, I. 2010. Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renew. Energ. 35, 1976-1981. https://doi.org/10.1016/j.renene.2010.01.027

Visioli LJ, Castilhos F, Cardozo-Filho L, Mello BTF, Silva C. 2016. Production of esters from soybean oil deodorizer distillate in pressurized ethanol. Fuel Process. Technol. 149, 326-331. https://doi.org/10.1016/j.fuproc.2016.04.038

Visioli LJ, Trentini CP, Castilhos F, Silva C. 2018. Esters production in continuous reactor from macauba pulp oil using methyl acetate in pressurized conditions. J. Supercrit. Fluids 140, 238-247. https://doi.org/10.1016/j.supflu.2018.06.018

Zhou D, Qiao B, Li G, Xue S, Yin J. 2017. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresour. Technol. 238, 609-615. https://doi.org/10.1016/j.biortech.2017.04.097 PMid:28482287

Published

2021-03-03

How to Cite

1.
Silva C, Colonelli T, Trentini C, Postaue N, Zempulski D, Cardozo-Filho L, Silva E. Catalyst-free production of fatty acid ethyl esters (FAEE) from macauba pulp oil. grasasaceites [Internet]. 2021Mar.3 [cited 2021Dec.9];72(1):e398. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1870

Issue

Section

Research

Most read articles by the same author(s)