Fatty acid composition, phytochemicals and antioxidant potential of Capparis spinosa sedes





Antioxidant activity, Bioactive compounds, Fatty acids, Flavonoids, Phenolic compounds


The present study evaluates the contents in bioactive compounds, antioxidant activity, oil content and fatty acid composition of Capparis spinosa seeds. Samples were collected from 5 different habitats (AH: Ahar; KU: Kurdistan; U1, U2 and U3: Urmia) in Iran. The oil content in the seeds ranged from 16 to 27%. The predominant fatty acid was linoleic acid (45-50%) followed by oleic acid (30-39%), palmitic acid (2-8%) and stearic acid (2-3%). Total phenolic content (TPC) varied from 16.3 to 24.2 mg GAE/ g DW; total flavonoid content (TFC) ranged from 1.48 to 3.05 mg QE/g DW; and the antioxidant activity (DPPH assay) of the seeds was between 35 and 63%. The compounds obtained from different genotypes of C. spinosa seeds had different compositions, great antioxidant capacity and unsaturated fatty acids, and therefore could be a prospective source of natural bioactive molecules for the food and health industry.


Download data is not yet available.


Acar M, Mettetal JT, Van Oudenaarden A. 2008. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471-475. https://doi.org/10.1038/ng.110 PMid:18362885

Akgül A, Özcan M. 1999. Some compositional characteristics of capers (Capparis spp.) seed and oil. Grasas Aceites 50, 49-52. https://doi.org/10.3989/gya.1999.v50.i1.635

Alirezalu A, Ahmadi N, Salehi P, Sonboli A, Alirezalu K, Khaneghah AM, Lorenzo JM. 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9, 436-451. https://doi.org/10.3390/foods9040436 PMid:32260449 PMCid:PMC7230283

Alirezalu A, Salehi P, Ahmadi N, Sonboli A, Aceto S, Maleki HH, Ayyari M. 2018. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. Int. J. Food Prop. 21, 452-470. https://doi.org/10.1080/10942912.2018.1446146

Alirezalu K, Azadmard-Damirchi S, Fathi Achachlouei B, Hesari J, Emaratpardaz J, Tavakolian R. 2016. Physicochemical properties and nutritional composition of black truffles grown in Iran. Chem Nat. Compd. 52, 290-293. https://doi.org/10.1007/s10600-016-1617-4

Alirezalu K, Hesari J, Nemati Z, Munekata PES, Barba FJ, Lorenzo JM. 2019. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 120, 839-850. https://doi.org/10.1016/j.foodres.2018.11.048 PMid:31000305

Alirezalu K, Pateiro M, Yaghoubi M, Alirezalu A, Peighambardoust SH, Lorenzo JM. 2020. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 100, 292-306. https://doi.org/10.1016/j.tifs.2020.04.010

Argentieri M, Macchia F, Papadia P, Fanizzi FP, Avato P. 2012. Bioactive compounds from Capparis spinosa subsp. rupestris. Ind. Crops Prod. 36, 65-69. https://doi.org/10.1016/j.indcrop.2011.08.007

Arslan D, Özcan M. 2007. Effect of some organic acids, yoghurt, starter culture and bud sizes on the chemical properties of pickled caper buds. J. Food Sci. Technol. 44, 66-69.

Ayabe S, Akashi T. 2006. Cytochrome P450s in flavonoid metabolism. Phytochem. Rev. 5, 271-282. https://doi.org/10.1007/s11101-006-9007-3

Azadmard-Damirchi S, Dutta PC. 2006. Novel solid-phase extraction method to separate 4-desmethyl-, 4-monomethyl-, and 4,4′-dimethylsterols in vegetable oils. J. Chromatogr. A. 1108, 183-187. https://doi.org/10.1016/j.chroma.2006.01.015 PMid:16445919

Baghiani A, Ameni D, Boumerfeg S, Adjadj M, Djarmouni M, Charef N, Arrar L. 2012. Studies of antioxidants and xanthine oxidase inhibitory potentials of root and aerial parts of medicinal plant Capparis spinosa L. Am. J. Med. Med. Sci. 2, 25-32. https://doi.org/10.5923/j.ajmms.20120201.06

Bakr RO, El Bishbishy MH. 2016. Profile of bioactive compounds of Capparis spinosa var. Aegyptiaca growing in Egypt. Bras. J. Farmacogn. 26, 514-520. https://doi.org/10.1016/j.bjp.2016.04.001

Boissier E. 1867. Flora Orientalis sive enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum. H. Georg, Basel, Geneve. https://doi.org/10.5962/bhl.title.20323

Calder PC. 2015. Functional roles of fatty acids and their effects on human health. J. Parenter. Enteral. Nutr. 39, 18S-32S. https://doi.org/10.1177/0148607115595980 PMid:26177664

Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. 2001. Antioxidant activity of extracts from Acacia confusa Bark and Heartwood. J. Agric. Food Chem. 49, 3420-3424. https://doi.org/10.1021/jf0100907 PMid:11453785

Čolić SD, Fotirić Akšić MM, Lazarević KB, Zec GN, Gašić UM, Dabić Zagorac D, Natić MM. 2017. Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem. 234, 455-463. https://doi.org/10.1016/j.foodchem.2017.05.006 PMid:28551260

Duman E, Özcan MM. 2014. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey. Environ. Monit. Assess. 186, 239-245. https://doi.org/10.1007/s10661-013-3369-y PMid:23925865

Domínguez R, Gullón P, Pateiro M, Munekata PES, Zhang W, Lorenzo JM. 2020. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 9, 73. https://doi.org/10.3390/antiox9010073 PMid:31952111 PMCid:PMC7022261

El amri N, Errachidi F, Bour A, Bouhaddaoui S, Chabir R. 2019. Morphological and nutritional properties of moroccan Capparis spinosa seeds. Scienti. World J. 8594820. https://doi.org/10.1155/2019/8594820 PMid:31178668 PMCid:PMC6507270

El-Ghorab A, Shibamoto T, Özcan MM. 2007. Chemical composition and antioxidant activities of buds and leaves of capers (Capparis ovata Desf. var. canescens) cultivated in Turkey. J. Essent. Oil Res. 19, 72-77. https://doi.org/10.1080/10412905.2007.9699233

El-Waseif MA, Badr SA. 2018. Using Egyptian caper seeds oil (Capparis spinosa L) as a natural antioxidant to improving oxidative stability of frying oils during deep fat frying. World J. Dairy Food Sci. 13, 18-30.

Fazio A, Plastina P, Meijerink J, Witkamp RF, Gabriele B. 2013. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 140, 817-824. https://doi.org/10.1016/j.foodchem.2012.11.010 PMid:23692771

Ghafar F, Tengku Nazrin TNN, Mohd Salleh MR, Nor Hadi N, Ahmad N, Hamzah AA, Azman IN. 2017. Total phenolic content and total flavonoid content in Moringa oleifera seed. Herit. Sci. 1, 23-25. https://doi.org/10.26480/gws.01.2017.23.25

Ghimire B, Seong E, Kim E, Ghimeray A, Yu C, Ghimire B, Min Chung I. 2011. A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. J. Med. Plant Res. 5, 1884-1891.

Givianrad MH, Saffarpour S, Beheshti P. 2011. Fatty acid and triacylglycerol compositions of Capparis spinosa seed oil. Chem. Nat. Compd. 47, 798-799. https://doi.org/10.1007/s10600-011-0063-6

Hedge IC, Lamond J. 1970. Capparidaceae. In: Rechinger KH (ed) Flora Iranica, vol 68. Akademische Druck-u, Verlagsanstalt, Graz, pp. 1-9.

Ibrahim M, El-Masry H. 2016. Phenolic content and antioxidant activity of cantaloupe (Cucumis melo var. cantalupensis) and food application. Int. J. Food Sci. Nutr. 5, 24. https://doi.org/10.11648/j.ijnfs.20160501.13

Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R. 2012. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosci. 17, 2396-2418. https://doi.org/10.2741/4061 PMid:22652788

Johansson A, Laine T, Linna MM, Kallio H. 2000. Variability in oil content and fatty acid composition in wild northern currants. Eur. Food Res. Technol. 211, 277-283. https://doi.org/10.1007/s002170000151

Katalinic V, Milos M, Kulisic T, Jukic M. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550-557. https://doi.org/10.1016/j.foodchem.2004.12.004

Lamaisri C, Punsuvon V, Chanprame S, Arunyanark A, Srinives P, Liangsakul P. 2015. Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin J. Sci. Technol. 37, 389-395.

Lamien-Meda A, Nell M, Lohwasser U, Börner A, Franz C, Novak J. 2010. Investigation of antioxidant and rosmarinic acid variation in the sage collection of the genebank in gatersleben. J. Agric. Food Chem. 58, 3813-3819. https://doi.org/10.1021/jf903993f PMid:20187608

Liu Q, Yao H. 2007. Antioxidant activities of barley seeds extracts. Food Chem. 102, 732-737. https://doi.org/10.1016/j.foodchem.2006.06.051

Lorenzo JM, Munekata PES, Sant'Ana AS, Carvalho RB, Barba FJ, Toldrá F, Trindade MA. 2018. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Tech. 77, 1-10. https://doi.org/10.1016/j.tifs.2018.04.007

Mamati GE, Liang Y, Lu J. 2006. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J. Sci. Food Agri. 86, 459-464. https://doi.org/10.1002/jsfa.2368

Matthäus B, Özcan M. 2005. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens (Coss.) Heywood. J. Agri. Food Chem. 53, 7136-7141. https://doi.org/10.1021/jf051019u PMid:16131121

Mensink RP. 2016. Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis. In WHO (1st ed.). Retrieved from https://www.who.int/nutrition/publications/nutrientrequirements/sfa_systematic_review/e/

Nagy K, Tiuca ID. 2017. Importance of fatty acids in physiopathology of human body. In A. Catala (Ed.), Fatty Acids (1st ed., pp. 3-22). https://doi.org/10.5772/67407

Nakajima JI, Tanaka I, Seo S, Yamazaki M, Saito K. 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J. Biomed. Biotechnol. 2004 241-247. https://doi.org/10.1155/S1110724304404045 PMid:15577184 PMCid:PMC1082896

Onemli F. (2012). Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chil. J. Agric. Res. 72, 483-488. https://doi.org/10.4067/S0718-58392012000400004

Özcan MM. 2008. Investigation on the mineral contents of Capers (Capparis spp.) seed oils growing wild in Turkey. J. Med. Food. 11, 596-599. https://doi.org/10.1089/jmf.2007.0500 PMid:18800913

Özcan M, Hacıseferogulları H, Demir F. 2004. Some physico-mechanic and chemical properties of capers (Capparis ovata Desf. var. canescens (Coss.) Heywood) flower buds. J. Food Eng. 65, 151-155. https://doi.org/10.1016/j.jfoodeng.2004.01.006

Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 97, 452-458. https://doi.org/10.1016/j.foodchem.2005.05.024

Raheja RK, Batta SK, Ahuja KL, Labana KS, Singh M. 1987. Comparison of oil content and fatty acid composition of peanut genotypes differing in growth habit. Qualitas Plantarum Plant Foods for Hum. Nutr. 37, 103-108. https://doi.org/10.1007/BF01092045

Saadaoui E, Guetat A, Massoudi C, Tlili N, Khaldi A. 2015. Wild Tunisian Capparis spinosa L.: subspecies and seed fatty acids. Int. J. Curr. Res. Acad. Rev. 3, 315-327.

Savage GP, McNeil DL. Dutta PC. 1997. Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in New Zealand. J. Am. Oil Chem. Soc. 74, 755-759. https://doi.org/10.1007/s11746-997-0214-x

Saxena SN, Rathore SS, Diwakar Y, Kakani RK, Kant K, Dubey PN, John S. 2017. Genetic diversity in fatty acid composition and antioxidant capacity of Nigella sativa L. genotypes. LWT - Food Sci. Technol. 78, 198-207. https://doi.org/10.1016/j.lwt.2016.12.033

Shaghaghi A, Alirezalu A, Nazarianpour E, Sonboli A, Nejad-Ebrahimi S. 2019. Opioid alkaloids profiling and antioxidant capacity of Papaver species from Iran. Ind. Crops Prod. 142, 111870. https://doi.org/10.1016/j.indcrop.2019.111870

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Tlili N, Munne-Bosch S, Nasri N, Saadaoui E, Khaldi A, Triki S. 2009. Fatty acids, tocopherols and carotenoids from seeds of Tunisian caper "Capparis spinosa". J. Food Lipids. 16, 452-464. https://doi.org/10.1111/j.1745-4522.2009.01158.x

Wojdyło A, Nowicka P, Grimalt M, Legua P, Almansa MS, Amorós A, Carbonell-Barrachina AA, Hernández F. 2019. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants. 8, 539-558. https://doi.org/10.3390/plants8120539 PMid:31775254 PMCid:PMC6963175

Yuldasheva NK, Ul′chenko NT, Glushenkova AI. 2008. Lipids of capparis spinosa seeds. Chem Nat. Compd. 44, 637-638. https://doi.org/10.1007/s10600-008-9132-x

Zhang H, Ma ZF. 2018. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 10, 116-130. https://doi.org/10.3390/nu10020116 PMid:29364841 PMCid:PMC5852692

Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, de Feo V. 2011. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int. J. Mol. Sci. 12, 8846-8861. https://doi.org/10.3390/ijms12128846 PMid:22272107 PMCid:PMC3257104

Zohary M. 1960. The species of Capparis in the Mediterranean and the Near Eastern countries. Bull. Res. Counc. Isr. 8, 49-64.



How to Cite

Bodaghzadeh A, Alirezalu K, Amini S, Alirezalu A, Domínguez R, Lorenzo J. Fatty acid composition, phytochemicals and antioxidant potential of Capparis spinosa sedes. Grasas aceites [Internet]. 2021Dec.30 [cited 2024May23];72(4):e430. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1910




Most read articles by the same author(s)