Fatty acid composition, phytochemicals and antioxidant potential of Capparis spinosa sedes





Antioxidant activity, Bioactive compounds, Fatty acids, Flavonoids, Phenolic compounds


The present study evaluates the contents in bioactive compounds, antioxidant activity, oil content and fatty acid composition of Capparis spinosa seeds. Samples were collected from 5 different habitats (AH: Ahar; KU: Kurdistan; U1, U2 and U3: Urmia) in Iran. The oil content in the seeds ranged from 16 to 27%. The predominant fatty acid was linoleic acid (45-50%) followed by oleic acid (30-39%), palmitic acid (2-8%) and stearic acid (2-3%). Total phenolic content (TPC) varied from 16.3 to 24.2 mg GAE/ g DW; total flavonoid content (TFC) ranged from 1.48 to 3.05 mg QE/g DW; and the antioxidant activity (DPPH assay) of the seeds was between 35 and 63%. The compounds obtained from different genotypes of C. spinosa seeds had different compositions, great antioxidant capacity and unsaturated fatty acids, and therefore could be a prospective source of natural bioactive molecules for the food and health industry.


Download data is not yet available.


Acar M, Mettetal JT, Van Oudenaarden A. 2008. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471-475.

Akgül A, Özcan M. 1999. Some compositional characteristics of capers (Capparis spp.) seed and oil. Grasas Aceites 50, 49-52.

Alirezalu A, Ahmadi N, Salehi P, Sonboli A, Alirezalu K, Khaneghah AM, Lorenzo JM. 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9, 436-451.

Alirezalu A, Salehi P, Ahmadi N, Sonboli A, Aceto S, Maleki HH, Ayyari M. 2018. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. Int. J. Food Prop. 21, 452-470.

Alirezalu K, Azadmard-Damirchi S, Fathi Achachlouei B, Hesari J, Emaratpardaz J, Tavakolian R. 2016. Physicochemical properties and nutritional composition of black truffles grown in Iran. Chem Nat. Compd. 52, 290-293.

Alirezalu K, Hesari J, Nemati Z, Munekata PES, Barba FJ, Lorenzo JM. 2019. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 120, 839-850.

Alirezalu K, Pateiro M, Yaghoubi M, Alirezalu A, Peighambardoust SH, Lorenzo JM. 2020. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 100, 292-306.

Argentieri M, Macchia F, Papadia P, Fanizzi FP, Avato P. 2012. Bioactive compounds from Capparis spinosa subsp. rupestris. Ind. Crops Prod. 36, 65-69.

Arslan D, Özcan M. 2007. Effect of some organic acids, yoghurt, starter culture and bud sizes on the chemical properties of pickled caper buds. J. Food Sci. Technol. 44, 66-69.

Ayabe S, Akashi T. 2006. Cytochrome P450s in flavonoid metabolism. Phytochem. Rev. 5, 271-282.

Azadmard-Damirchi S, Dutta PC. 2006. Novel solid-phase extraction method to separate 4-desmethyl-, 4-monomethyl-, and 4,4′-dimethylsterols in vegetable oils. J. Chromatogr. A. 1108, 183-187.

Baghiani A, Ameni D, Boumerfeg S, Adjadj M, Djarmouni M, Charef N, Arrar L. 2012. Studies of antioxidants and xanthine oxidase inhibitory potentials of root and aerial parts of medicinal plant Capparis spinosa L. Am. J. Med. Med. Sci. 2, 25-32.

Bakr RO, El Bishbishy MH. 2016. Profile of bioactive compounds of Capparis spinosa var. Aegyptiaca growing in Egypt. Bras. J. Farmacogn. 26, 514-520.

Boissier E. 1867. Flora Orientalis sive enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum. H. Georg, Basel, Geneve.

Calder PC. 2015. Functional roles of fatty acids and their effects on human health. J. Parenter. Enteral. Nutr. 39, 18S-32S.

Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. 2001. Antioxidant activity of extracts from Acacia confusa Bark and Heartwood. J. Agric. Food Chem. 49, 3420-3424.

Čolić SD, Fotirić Akšić MM, Lazarević KB, Zec GN, Gašić UM, Dabić Zagorac D, Natić MM. 2017. Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem. 234, 455-463.

Duman E, Özcan MM. 2014. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey. Environ. Monit. Assess. 186, 239-245.

Domínguez R, Gullón P, Pateiro M, Munekata PES, Zhang W, Lorenzo JM. 2020. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 9, 73.

El amri N, Errachidi F, Bour A, Bouhaddaoui S, Chabir R. 2019. Morphological and nutritional properties of moroccan Capparis spinosa seeds. Scienti. World J. 8594820.

El-Ghorab A, Shibamoto T, Özcan MM. 2007. Chemical composition and antioxidant activities of buds and leaves of capers (Capparis ovata Desf. var. canescens) cultivated in Turkey. J. Essent. Oil Res. 19, 72-77.

El-Waseif MA, Badr SA. 2018. Using Egyptian caper seeds oil (Capparis spinosa L) as a natural antioxidant to improving oxidative stability of frying oils during deep fat frying. World J. Dairy Food Sci. 13, 18-30.

Fazio A, Plastina P, Meijerink J, Witkamp RF, Gabriele B. 2013. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 140, 817-824.

Ghafar F, Tengku Nazrin TNN, Mohd Salleh MR, Nor Hadi N, Ahmad N, Hamzah AA, Azman IN. 2017. Total phenolic content and total flavonoid content in Moringa oleifera seed. Herit. Sci. 1, 23-25.

Ghimire B, Seong E, Kim E, Ghimeray A, Yu C, Ghimire B, Min Chung I. 2011. A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. J. Med. Plant Res. 5, 1884-1891.

Givianrad MH, Saffarpour S, Beheshti P. 2011. Fatty acid and triacylglycerol compositions of Capparis spinosa seed oil. Chem. Nat. Compd. 47, 798-799.

Hedge IC, Lamond J. 1970. Capparidaceae. In: Rechinger KH (ed) Flora Iranica, vol 68. Akademische Druck-u, Verlagsanstalt, Graz, pp. 1-9.

Ibrahim M, El-Masry H. 2016. Phenolic content and antioxidant activity of cantaloupe (Cucumis melo var. cantalupensis) and food application. Int. J. Food Sci. Nutr. 5, 24.

Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R. 2012. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosci. 17, 2396-2418.

Johansson A, Laine T, Linna MM, Kallio H. 2000. Variability in oil content and fatty acid composition in wild northern currants. Eur. Food Res. Technol. 211, 277-283.

Katalinic V, Milos M, Kulisic T, Jukic M. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550-557.

Lamaisri C, Punsuvon V, Chanprame S, Arunyanark A, Srinives P, Liangsakul P. 2015. Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin J. Sci. Technol. 37, 389-395.

Lamien-Meda A, Nell M, Lohwasser U, Börner A, Franz C, Novak J. 2010. Investigation of antioxidant and rosmarinic acid variation in the sage collection of the genebank in gatersleben. J. Agric. Food Chem. 58, 3813-3819.

Liu Q, Yao H. 2007. Antioxidant activities of barley seeds extracts. Food Chem. 102, 732-737.

Lorenzo JM, Munekata PES, Sant’Ana AS, Carvalho RB, Barba FJ, Toldrá F, Trindade MA. 2018. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Tech. 77, 1-10.

Mamati GE, Liang Y, Lu J. 2006. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J. Sci. Food Agri. 86, 459-464.

Matthäus B, Özcan M. 2005. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens (Coss.) Heywood. J. Agri. Food Chem. 53, 7136-7141.

Mensink RP. 2016. Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis. In WHO (1st ed.). Retrieved from https://www.who.int/nutrition/publications/nutrientrequirements/sfa_systematic_review/e/

Nagy K, Tiuca ID. 2017. Importance of fatty acids in physiopathology of human body. In A. Catala (Ed.), Fatty Acids (1st ed., pp. 3-22).

Nakajima JI, Tanaka I, Seo S, Yamazaki M, Saito K. 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J. Biomed. Biotechnol. 2004 241-247.

Onemli F. (2012). Impact of climate change on oil fatty acid composition of peanut (Arachis hypogaea L.) in three market classes. Chil. J. Agric. Res. 72, 483-488.

Özcan MM. 2008. Investigation on the mineral contents of Capers (Capparis spp.) seed oils growing wild in Turkey. J. Med. Food. 11, 596-599.

Özcan M, Hacıseferogulları H, Demir F. 2004. Some physico-mechanic and chemical properties of capers (Capparis ovata Desf. var. canescens (Coss.) Heywood) flower buds. J. Food Eng. 65, 151-155.

Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 97, 452-458.

Raheja RK, Batta SK, Ahuja KL, Labana KS, Singh M. 1987. Comparison of oil content and fatty acid composition of peanut genotypes differing in growth habit. Qualitas Plantarum Plant Foods for Hum. Nutr. 37, 103-108.

Saadaoui E, Guetat A, Massoudi C, Tlili N, Khaldi A. 2015. Wild Tunisian Capparis spinosa L.: subspecies and seed fatty acids. Int. J. Curr. Res. Acad. Rev. 3, 315-327.

Savage GP, McNeil DL. Dutta PC. 1997. Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in New Zealand. J. Am. Oil Chem. Soc. 74, 755-759.

Saxena SN, Rathore SS, Diwakar Y, Kakani RK, Kant K, Dubey PN, John S. 2017. Genetic diversity in fatty acid composition and antioxidant capacity of Nigella sativa L. genotypes. LWT - Food Sci. Technol. 78, 198-207.

Shaghaghi A, Alirezalu A, Nazarianpour E, Sonboli A, Nejad-Ebrahimi S. 2019. Opioid alkaloids profiling and antioxidant capacity of Papaver species from Iran. Ind. Crops Prod. 142, 111870.

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152-178.

Tlili N, Munne-Bosch S, Nasri N, Saadaoui E, Khaldi A, Triki S. 2009. Fatty acids, tocopherols and carotenoids from seeds of Tunisian caper “Capparis spinosa”. J. Food Lipids. 16, 452-464.

Wojdyło A, Nowicka P, Grimalt M, Legua P, Almansa MS, Amorós A, Carbonell-Barrachina AA, Hernández F. 2019. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants. 8, 539-558.

Yuldasheva NK, Ul′chenko NT, Glushenkova AI. 2008. Lipids of capparis spinosa seeds. Chem Nat. Compd. 44, 637-638.

Zhang H, Ma ZF. 2018. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 10, 116-130.

Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, de Feo V. 2011. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int. J. Mol. Sci. 12, 8846-8861.

Zohary M. 1960. The species of Capparis in the Mediterranean and the Near Eastern countries. Bull. Res. Counc. Isr. 8, 49-64.



How to Cite

Bodaghzadeh A, Alirezalu K, Amini S, Alirezalu A, Domínguez R, Lorenzo J. Fatty acid composition, phytochemicals and antioxidant potential of Capparis spinosa sedes. grasasaceites [Internet]. 2022Jan.13 [cited 2022Jan.19];72(4):e430. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1910




Most read articles by the same author(s)