Propiedades físico-químicas, ácidos fenólicos y compuestos volátiles del aceite extraído de semillas de alhydwan (Boerhavia elegana Choisy)

Autores/as

  • A. Al-Farga State key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University - Department of Food Science, Faculty of Agriculture, Ibb University
  • H. Zhang State key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University
  • A. Siddeeg State key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University - Department of Food Science and Technology, Faculty of Engineering and Technology, University of Gezira
  • M. V.M. Chamba State key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University - Department of Human Ecology, Domasi College of Education
  • Q. A. Nabil State key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University

DOI:

https://doi.org/10.3989/gya.0944142

Palabras clave:

Ácidos fenólicos, Alhydwan, Boerhavia elegana Choisy, Compuestos volátiles, Nuevo alimento, Propiedades físico-químicas

Resumen


En este estudio se ha determinado la composición química, las propiedades físico-químicas, ácidos fenólicos y compuestos volátiles de aceites de semillas de alhydwan (Boerhavia elegana Choisy). Las semillas contenían un 11.49% de aceite, 6.88% de cenizas, 6,12% de humedad, 14.60% de proteínas, 24.77% de carbohidratos totales y 36.13% de fibra. El aceite contiene 74,63 mg·100 g−1 de ácidos grasos insaturados, con oleico (C18: 1) (57,77%), palmítico (C16: 0) (18,65%) y linoleico (C18: 2) (12,88%) como los más abundantes. La densidad relativa fue de 0,88 y el índice de yodo de 105,59. El análisis del color mostró un valor de 28.33 Y+1,43 R. El aceite también mostro tener una alta estabilidad oxidativa relativa. La determinación de la composición de tocols mostró que α-tocotrienol, γ-tocoferol y γ-tocotrienol están presentes en mayor concentración que el resto. Se detectaron siete ácidos fenólicos (cafeico, vaníllico, galico, p-cumárico, ascórbico, cinámico y ferúlico), siendo el ácido ascórbico el mayoritario (5,44 mg·100 g−1). En la determinación de volátiles, se encontraron 48 componentes, con Z-10-Pentadecen-1-ol (56,73%); ácido hexadecenoico, Z-11- (18,52%); ácido 9,12-octadecadienoico (Z, Z) - (3,93%) y ácido 9,12-octadecadienoico (Z, Z) -, éster 2-hidroxi-1- (hidroximetil) etil (3,04%) como mayoritarios. Estos resultados demostraron que las semillas de alhydwan tiene un gran potencial para ser utilizadas como una buena fuente de aceite comestible de calidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Farga A, Zhang H, Azhari S. 2014. In Vitro Antioxidant Activity and Total Phenolic and Flavonoid Contents of Alhydwan (Boerhavia elegana Choisy) Seeds. J. Food Nutr. Res. 2, 215–220.

Al-Saqer JM, Sidhu JS, Al-Hooti SN, Al-Amiri HA, Al-Othman A, Al-Haji L, Ahmed N, Mansour I, Minal J. 2004. Developing functional foods using red palm IIII olein. IV. Tocopherols and tocotrienols. Food Chem. 85, 579–583. http://dx.doi.org/10.1016/j.foodchem.2003.08.003

American Soybean Association Soy Stats. 2007. A reference guide to important Soybean Fats and Figures.

AOAC. 2000. Official methods of analysis of AOAC International, 17th ed., Vols. 1 and 2, AOAC International, Gaitherburg, Maryland, USA Washington, DC: Association of Analytical Chemists.

AOAC. 1995. Official methods of analysis of Association of Official Analytical Chemists International. Washington, USA.

AOCS. 1997. Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed. AOCS Press, Champaign, USA.

Aparicio R, Roda L, Albi MA, Gutiérrez F. 1999. Effect of various compounds on virgin olive oil stability measured by Rancimat. J. Agric. Food Chem. 47, 4150–4155. http://dx.doi.org/10.1021/jf9812230 PMid:10552782

Azhari S, Xu YS, Jiang QX, Xia WS. 2014. Physicochemical properties and chemical composition of Seinat (Cucumismelo var. tibish) seed oil and its antioxidant activity. Grasas Aceites, 65, 1–9. http://dx.doi.org/10.3989/gya.074913

Besbes S, Blecker C, Deroanne C, Drira NE, Attia H. 2004. Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem. 84, 577–584. http://dx.doi.org/10.1016/S0308-8146(03)00281-4

Boulous L. 1988. Contribution to the flora of South Yemen (PDRY). Candollea, 43, 549–585.

Bowen RAR, Clandinin MT. 2005. Maternal dietary 22:6n-3 is more effective than 18:3n-3 in increasing the 22:6n-3content in phospholipids of glial cells from neonatal rat brain. Brit. J. Nutr. 93, 601–611. http://dx.doi.org/10.1079/BJN20041390 PMid:15975158

Bruneton J, 1999. Pharmacognosy, Phytochemistry, Medicinal Plants: Essential Oils, 2nd ed. Lavoisier Publishing, New York, pp. 461–780.

Chaudhary G, Dantu PK. 2011. Morphological, phytochemical and pharmacological, studies on Boerhavia diffusa L. J. Med. Plants Res. 5, 2125–2130.

da Silva Araújo F, Araújo IC, Costa ICG, Rodarte de Moura CV, Chaves MH, Araújo ECE. 2014. Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states. Renewable Energy 71, 495–501. http://dx.doi.org/10.1016/j.renene.2014.06.001

Duyff RL, Ada AF. 2011. American dietetic association complete food and nutrition guide: Houghton Mifflin Harcourt.

El-Mallah MH, Mumi T, El-Shami S. 1999. New trends in determining the authenticity of corn oil. Grasas Aceites 50, 7–15. http://dx.doi.org/10.3989/gya.1999.v50.i1.629

Eromosele IC, Eromosele CO, Innazo P, Njerim P. 1997. Studies on some seeds and seed oils. Bioresour. Technol. 64, 245–247. http://dx.doi.org/10.1016/S0960-8524(97)00163-6

Fatnassi S, Nehdi I, Zarrouk H. 2009. Chemical composition and profile characteristics of Osage orange Maclurapomifera (Rafin.) Schneider seed and seed oil. Ind. Crops Prod. 29, 1–8. http://dx.doi.org/10.1016/j.indcrop.2008.04.013

Goff SA, Klee HJ. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science, 311, 815–819. http://dx.doi.org/10.1126/science.1112614 PMid:16469919 Hsu SY, Yu SH. 2002. Comparisons on 11 plant oil fat substitutes for low-fat kung-wans. J. Food Eng. 51, 215–220. http://dx.doi.org/10.1016/S0260-8774(01)00059-0

ISO/FIDS 12228. 1999. International Standards, 1st ed. Genève, Switzerland.

Jelassi A, Cheraief I, Jannet HB. 2014. Chemical composition and characteristic profiles of seed oils from three Tunisian Acacia species. J. Food Comp. Anal. 33, 49–54. http://dx.doi.org/10.1016/j.jfca.2013.11.001

Kyriakidis NB, Katsiloulis T. 2000. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: comparison with the relevant American Oil Chemists Society Method. J. Am. Oil Chem. Soc. 77, 1235–1238. http://dx.doi.org/10.1007/s11746-000-0193-3

Mohamed R, Fernandez J, Pineda M, Aguilar M. 2007. Roselle (Hibiscus sabdariffa) seed oil is a rich source of tocopherol. J. Food Sci. 72, S207–S211. http://dx.doi.org/10.1111/j.1750-3841.2007.00285.x PMid:17995816

Mulatu G, Sten S, Thomas B. 2011. Variation and inheritance of oil content and fatty acid composition in niger (Guizotiaabyssinica). J. Food Comps. Anal. 24, 995–1003. http://dx.doi.org/10.1016/j.jfca.2010.12.010

Nehdi I, Omri S, Khalil MI, Al-Resayes SI. 2010. Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Indus. Crops. Prod. 32, 360–365. http://dx.doi.org/10.1016/j.indcrop.2010.05.016

Nyam KL, Tan CP, Lai OM, Long K, Mana CYB. 2009. Physicochemical properties and bioactive compounds of selected seed oils. Food Sci. Biotechnol. 42, 1396–1403. http://dx.doi.org/10.1016/j.lwt.2009.03.006

Nyam KL, Tan CP, Lai OM, Long YB, Che M. 2009. Physicochemical properties and bioactive compounds of selected seed oils. LWT -Food Sci. Technol. 42, 1396–1403.

Ojeh O. 1981. Effects of refining on the physical and chemical properties of cashew kernel oil. J. Fats Oils Technol. 16, 513–517.

Oomah BD, Ladet S, Godfrey DV, Liang J, Girard B. 2000. Characteristics of raspberry (Rubusidaeus L.) seed oil. Food Chem. 69, 187–193. http://dx.doi.org/10.1016/S0308-8146(99)00260-5

Osborne DR, Voogt P. 1978. Calculation of Caloric Value. In: "Analysis of Nutrients in Foods". Academic Press, New York, pp. 23–34.

Ranganna S. 1986. Handbook of analysis and quality control for fruit and vegetable products. New Delhi: Tata Me Graw-Hill Publishing Company. 1112 pp.

Saidu AN, Jideobi NG. 2009. The proximate and elemental analysis of some leafy vegetables grown in Minna and Environs. J. Appl. Sci. Envir. Manage 13, 21–22.

Sbihi HM, Nehdi IA, Tan CP, Al-Resayes SI. 2013. Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: A comparison study of their compositions and physicochemical properties. Indus. Crops Prod. 49, 573–579. http://dx.doi.org/10.1016/j.indcrop.2013.05.020

Su MH, Shih MC, Lin KH. 2014. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 156, 369–373. http://dx.doi.org/10.1016/j.foodchem.2014.02.016 PMid:24629982

Tan CP, Che Man YB, Selamat J, Yusoff MSA. 2002. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chem. 76, 385–389. http://dx.doi.org/10.1016/S0308-8146(01)00272-2

Publicado

2015-09-30

Cómo citar

1.
Al-Farga A, Zhang H, Siddeeg A, Chamba MV, Nabil QA. Propiedades físico-químicas, ácidos fenólicos y compuestos volátiles del aceite extraído de semillas de alhydwan (Boerhavia elegana Choisy). Grasas aceites [Internet]. 30 de septiembre de 2015 [citado 2 de mayo de 2025];66(3):e090. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1556

Número

Sección

Investigación