Acción de extractos de hojas de olivo sobre marcadores del estrés oxidativo en diabetes mellitus inducida por estreptozotocina en ratas
DOI:
https://doi.org/10.3989/gya.1104172Palabras clave:
Actividad de enzimas antioxidantes, Diabetes mellitus tipo dos, Estrés oxidativo, Extracto de hojas de olivo, Fenólicos FlavonoidesResumen
La diabetes mellitus tipo dos (DM2) es una de las enfermedades más extensas en el mundo. La terapia con hierbas sigue siendo una terapia complementaria para mantener un mejor control de la glucemia y reducir las complicaciones de la diabetes. Con el fin de evaluar los efectos curativos del extracto de hojas de olivo (OLE) en ratas diabéticas inducidas por estreptozotocina (STZ), veinticuatro ratas Wistar machos adultos se dividieron en cuatro grupos iguales; control, control diabético (45 mg/ kg STZ), ratas normales tratadas con OLE (17.8 mg/kg b.wt) y ratas diabéticas tratadas con OLE (45 mg / kg STZ + 17.8 mg / kg b.wt.). El extracto OLE se investigó para determinar la actividad antioxidante in vitro usando ensayos DPPH•. Se determinaron los fenoles, los taninos y el contenido de flavonoides. Se midió la actividad de GPX, SOD y GSH en lisado de RBC, CAT en plasma y MDA en suero. El OLE evitó la disminución de GSH y mantuvo MDA alrededor del rango normal en las ratas diabéticas tratadas. El estudio actual sugiere que OLE podría utilizarse de forma segura para mejorar la DM2 y el estrés oxidativo que le acompaña.
Descargas
Citas
Abaza L, Youssef NB, Manai H, Haddada FM, Methenni K, Zarrouk M. 2011. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 62, 96–104. https://doi.org/10.3989/gya.044710
Adefegha SA, Oboh G. 2016. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J. Taibah Univ. Med. Sci. 10, 521–533. https://doi.org/10.1016/j.jtusci.2015.10.008
Aebi H. 1984. Catalase in vitro. Methods in enzymology 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102 PMid:17446889
Afify AMR, El-Beltagi HS, Fayed SA, El-Ansary AE. 2017. Hypoglycemic and iron status ameliorative effects of Olea europea CV.'Picual' leaves extract in streptozotocin induced diabetic rats. Fresen. Environ. Bull. 26, 6898–6908.
Al-Marazeeq K, Haddadin MSY, Abdulla B, Haddadin JS. 2016. Biological activities of olive leaves extract from nabali baladi variety against lipid and protein oxidation. Int. J. Biol. Biotech. 13, 283–291.
Beutler E, Duran O, Kelly BM. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888. PMid:13967893
Brahmi F, Mechri B, Flamini G, Dhibi M, Hammami M. 2013. Antioxidant activities of the volatile oils and methanol extracts from olive stems. Acta Physiologiae Plantarum 35, 1061–1070. https://doi.org/10.1007/s11738-012-1144-2
Brand-Williams W, Cuvelier ME, Berset CLWT. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30.
Bulotta S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D. 2014. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 12, 219. https://doi.org/10.1186/s12967-014-0219-9
Ceriello A, Novials A, Ortega E, Canivell S, Sala LL, Pujadas G, Bucciarelli L, Rondinelli, M, Genovese S. 2013. Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care 36, 4104–4108. https://doi.org/10.2337/dc13-0750
Charoenprasert S, Mitchell A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 60, 7081–7095. https://doi.org/10.1021/jf3017699 PMid:22720792
Efsa NDA. 2014. Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on the substantiation of a health claim related to olive (Olea europaea L.) leaf water extract and increase in glucose tolerance pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 12, 3655.
El-Beltagi HS, Abdel-Mobdy YE Abdel-Rahim E. 2017. Toxicological influences of cyfluthrin attenuated by Solenostemma argel extracts on carbohydrate metabolism of male albino rats. Fresen. Environ. Bull. 26, 1673–1681.
El-Beltagi HS, Ahmed OK. Hegazy AE. 2016. Protective effect of nitric oxide on high temperature induced oxidative stress in wheat. Not. Sci. Biol. 8, 192–198. https://doi.org/10.15835/nsb.8.2.9807
Hadrich F, Garcia M, Maalej A, Moldes M, Isoda H, Feve B, Sayadi S. 2016. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci. 151, 167–173. https://doi.org/10.1016/j.lfs.2016.02.027 PMid:26872981
Hassen I, Casabianca H, Hosni K. 2015. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation–A mini-review. J. Funct. Foods. 18, 926–940. https://doi.org/10.1016/j.jff.2014.09.001
Hayes JE, Allen P, Brunton N, O'grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 126, 948–955. https://doi.org/10.1016/j.foodchem.2010.11.092
Martín-Vertedor D, Garrido M, Pariente JA, Espino J, Delgado- Adámez J. 2016. Bioavailability of bioactive molecules from olive leaf extracts and its functional value. Phytother. Res. 30, 1172–1179. https://doi.org/10.1002/ptr.5625 PMid:27137173
Nishikimi M, Appaji N, Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem. Biophys Res. Commun. 46, 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3
Park JH, Jung JH, Yang JY, Kim HS. 2013. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice. Nutr. Res. 33, 942–951. https://doi.org/10.1016/j.nutres.2013.07.011 PMid:24176234
Qadir NM, Ali KA, Qader SW. 2016. Antidiabetic effect of oleuropein from Olea Europaea leaf against alloxan induced type 1 diabetic in rats. Braz. Arch. Biol. Technol. 59, 1–10. https://doi.org/10.1590/1678-4324-2016150116
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra W. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, (4073), 588–590. https://doi.org/10.1126/science.179.4073.588 PMid:4686466
Salah MB, Abdelmelek H, Abderraba M. 2012. Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Med. Chem 2, 107–111.
Salah MB, Hafedh A, Manef A. 2017. Anti-diabetic activity and oxidative stress improvement of Tunisian Gerboui olive leaves extract on alloxan induced diabetic rats. J. Mater. 8, 1359–1364. http://www.jmaterenvironsci.com/
Saxena V, Mishra G, Akash S, Vishwakarma KK. 2013. A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian. J. Pharm. Clin. Res. 6, 148–149. https://innovareacademics.in/journals/index.php/ajpcr/article/view/329/196
Sifaoui I, López-Arencibia A, Martín-Navarro CM, Chammem N, Reyes-Batlle M, Mejri M, Lorenzo-Morales J, Abderabba M, Pi-ero JE. 2014. Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity. Exp. Parasitol. 14, 106–111. https://doi.org/10.1016/j.exppara.2014.03.002 PMid:24662269
Stankovic´ M, C’urcˇic´ S, Zlatic´ N, Bojovic´ B. 2017. Ecological variability of the phenolic compounds of Olea europaea L. leaves from natural habitats and cultivated conditions, Biotechnol. Biotec. Eq. 31, 499–504. https://doi.org/10.1080/13102818.2016.1275804
Uchiyama M, Mihara M. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271–278. https://doi.org/10.1016/0003-2697(78)90342-1
Xie PJ, Huang LX, Zhang CH, Zhang YL. 2015. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 16, 460–471. https://doi.org/10.1016/j.jff.2015.05.005
Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.