Acción de extractos de hojas de olivo sobre marcadores del estrés oxidativo en diabetes mellitus inducida por estreptozotocina en ratas

Autores/as

DOI:

https://doi.org/10.3989/gya.1104172

Palabras clave:

Actividad de enzimas antioxidantes, Diabetes mellitus tipo dos, Estrés oxidativo, Extracto de hojas de olivo, Fenólicos Flavonoides

Resumen


La diabetes mellitus tipo dos (DM2) es una de las enfermedades más extensas en el mundo. La terapia con hierbas sigue siendo una terapia complementaria para mantener un mejor control de la glucemia y reducir las complicaciones de la diabetes. Con el fin de evaluar los efectos curativos del extracto de hojas de olivo (OLE) en ratas diabéticas inducidas por estreptozotocina (STZ), veinticuatro ratas Wistar machos adultos se dividieron en cuatro grupos iguales; control, control diabético (45 mg/ kg STZ), ratas normales tratadas con OLE (17.8 mg/kg b.wt) y ratas diabéticas tratadas con OLE (45 mg / kg STZ + 17.8 mg / kg b.wt.). El extracto OLE se investigó para determinar la actividad antioxidante in vitro usando ensayos DPPH. Se determinaron los fenoles, los taninos y el contenido de flavonoides. Se midió la actividad de GPX, SOD y GSH en lisado de RBC, CAT en plasma y MDA en suero. El OLE evitó la disminución de GSH y mantuvo MDA alrededor del rango normal en las ratas diabéticas tratadas. El estudio actual sugiere que OLE podría utilizarse de forma segura para mejorar la DM2 y el estrés oxidativo que le acompaña.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abaza L, Youssef NB, Manai H, Haddada FM, Methenni K, Zarrouk M. 2011. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 62, 96–104. https://doi.org/10.3989/gya.044710

Adefegha SA, Oboh G. 2016. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J. Taibah Univ. Med. Sci. 10, 521–533. https://doi.org/10.1016/j.jtusci.2015.10.008

Aebi H. 1984. Catalase in vitro. Methods in enzymology 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102 PMid:17446889

Afify AMR, El-Beltagi HS, Fayed SA, El-Ansary AE. 2017. Hypoglycemic and iron status ameliorative effects of Olea europea CV.'Picual' leaves extract in streptozotocin induced diabetic rats. Fresen. Environ. Bull. 26, 6898–6908.

Al-Marazeeq K, Haddadin MSY, Abdulla B, Haddadin JS. 2016. Biological activities of olive leaves extract from nabali baladi variety against lipid and protein oxidation. Int. J. Biol. Biotech. 13, 283–291.

Beutler E, Duran O, Kelly BM. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888. PMid:13967893

Brahmi F, Mechri B, Flamini G, Dhibi M, Hammami M. 2013. Antioxidant activities of the volatile oils and methanol extracts from olive stems. Acta Physiologiae Plantarum 35, 1061–1070. https://doi.org/10.1007/s11738-012-1144-2

Brand-Williams W, Cuvelier ME, Berset CLWT. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30.

Bulotta S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D. 2014. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 12, 219. https://doi.org/10.1186/s12967-014-0219-9

Ceriello A, Novials A, Ortega E, Canivell S, Sala LL, Pujadas G, Bucciarelli L, Rondinelli, M, Genovese S. 2013. Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care 36, 4104–4108. https://doi.org/10.2337/dc13-0750

Charoenprasert S, Mitchell A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 60, 7081–7095. https://doi.org/10.1021/jf3017699 PMid:22720792

Efsa NDA. 2014. Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on the substantiation of a health claim related to olive (Olea europaea L.) leaf water extract and increase in glucose tolerance pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 12, 3655.

El-Beltagi HS, Abdel-Mobdy YE Abdel-Rahim E. 2017. Toxicological influences of cyfluthrin attenuated by Solenostemma argel extracts on carbohydrate metabolism of male albino rats. Fresen. Environ. Bull. 26, 1673–1681.

El-Beltagi HS, Ahmed OK. Hegazy AE. 2016. Protective effect of nitric oxide on high temperature induced oxidative stress in wheat. Not. Sci. Biol. 8, 192–198. https://doi.org/10.15835/nsb.8.2.9807

Hadrich F, Garcia M, Maalej A, Moldes M, Isoda H, Feve B, Sayadi S. 2016. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci. 151, 167–173. https://doi.org/10.1016/j.lfs.2016.02.027 PMid:26872981

Hassen I, Casabianca H, Hosni K. 2015. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation–A mini-review. J. Funct. Foods. 18, 926–940. https://doi.org/10.1016/j.jff.2014.09.001

Hayes JE, Allen P, Brunton N, O'grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 126, 948–955. https://doi.org/10.1016/j.foodchem.2010.11.092

Martín-Vertedor D, Garrido M, Pariente JA, Espino J, Delgado- Adámez J. 2016. Bioavailability of bioactive molecules from olive leaf extracts and its functional value. Phytother. Res. 30, 1172–1179. https://doi.org/10.1002/ptr.5625 PMid:27137173

Nishikimi M, Appaji N, Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem. Biophys Res. Commun. 46, 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3

Park JH, Jung JH, Yang JY, Kim HS. 2013. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice. Nutr. Res. 33, 942–951. https://doi.org/10.1016/j.nutres.2013.07.011 PMid:24176234

Qadir NM, Ali KA, Qader SW. 2016. Antidiabetic effect of oleuropein from Olea Europaea leaf against alloxan induced type 1 diabetic in rats. Braz. Arch. Biol. Technol. 59, 1–10. https://doi.org/10.1590/1678-4324-2016150116

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra W. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, (4073), 588–590. https://doi.org/10.1126/science.179.4073.588 PMid:4686466

Salah MB, Abdelmelek H, Abderraba M. 2012. Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Med. Chem 2, 107–111.

Salah MB, Hafedh A, Manef A. 2017. Anti-diabetic activity and oxidative stress improvement of Tunisian Gerboui olive leaves extract on alloxan induced diabetic rats. J. Mater. 8, 1359–1364. http://www.jmaterenvironsci.com/

Saxena V, Mishra G, Akash S, Vishwakarma KK. 2013. A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian. J. Pharm. Clin. Res. 6, 148–149. https://innovareacademics.in/journals/index.php/ajpcr/article/view/329/196

Sifaoui I, López-Arencibia A, Martín-Navarro CM, Chammem N, Reyes-Batlle M, Mejri M, Lorenzo-Morales J, Abderabba M, Pi-ero JE. 2014. Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity. Exp. Parasitol. 14, 106–111. https://doi.org/10.1016/j.exppara.2014.03.002 PMid:24662269

Stankovic´ M, C’urcˇic´ S, Zlatic´ N, Bojovic´ B. 2017. Ecological variability of the phenolic compounds of Olea europaea L. leaves from natural habitats and cultivated conditions, Biotechnol. Biotec. Eq. 31, 499–504. https://doi.org/10.1080/13102818.2016.1275804

Uchiyama M, Mihara M. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271–278. https://doi.org/10.1016/0003-2697(78)90342-1

Xie PJ, Huang LX, Zhang CH, Zhang YL. 2015. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 16, 460–471. https://doi.org/10.1016/j.jff.2015.05.005

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

Publicado

2018-03-30

Cómo citar

1.
Afify AM, El-Beltagi HS, Fayed SA, El-Ansary AE. Acción de extractos de hojas de olivo sobre marcadores del estrés oxidativo en diabetes mellitus inducida por estreptozotocina en ratas. Grasas aceites [Internet]. 30 de marzo de 2018 [citado 22 de febrero de 2025];69(1):e243. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1710

Número

Sección

Investigación