Efectos del cocinado de filetes de pescado dorado (Coryphaena hippurus) con diferentes técnicas sobre su composición en ácidos grasos de fosfolípidos y triacilglicéricos

Autores/as

DOI:

https://doi.org/10.3989/gya.0642241.2188

Palabras clave:

Aceites vegetales, Ácidos grasos, Fosfolípidos, Mahi-mahi, Métodos de cocción, Triacilgliceroles, ω-3/ω-6

Resumen


En este estudio, se investigó la composición de ácidos grasos (AG) en las fracciones de fosfolípidos (PL) y triacilgliceroles (TAG) de filetes de pescado dorado cocinados con diferentes métodos de cocción. En comparación con la fracción de triacilgliceroles, se encontró que los ácidos grasos 16:0, 18:0, 20:4ω6, 20:5ω3, 22:5ω3, 22:6ω3, así como ƩSFA y Ʃω-3 PUFA eran más altos en la fracción de fosfolípidos. Sin embargo, se encontró que los ácidos 18:1ω9, 18:2ω6 y Ʃω-6 PUFA eran bajos. La relación ω-3/ω-6 en la fracción de fosfolípidos de los filetes de pescado, tanto crudos como cocinados con diferentes métodos de cocción (fritos con aceite de girasol, con aceite de oliva, con aceite de maíz, con aceite de avellana, al horno, parrilla, microondas y al vapor), resultó ser significativamente mayor que en la fracción de triacilgliceroles. Los niveles de 22:6ω3, ∑PUFA y ∑ω-3PUFA fueron mayores en la fracción de fosfolípidos de los filetes cocinados al horno en comparación con los filetes de control. En la fracción de triacilgliceroles, la relación ω-3/ω-6, uno de los parámetros nutricionales importantes, resultó ser mayor en los filetes cocinados al microondas que en los filetes cocinados al horno, a la parrilla o al vapor.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abraha B, Admassu H, Mahmud A, Tsighe N, Shui XW. Fang Y. 2018. Effect of processing methods on nutritional and physico-chemical composition of fish: a review. MOJ Food Process Technol. 6 (4), 376–382.

Akgül N, Başhan M. 2023. Değişik Pişirme Yöntemlerinin Lambuka (Coryphaena hippurus) Filetolarının Yağ Asidi Kompozisyonu Üzerine Etkileri. Karadeniz Fen Bilimleri Derg. 13 (2), 752–763.

Adkins Y, Kelley DS. 2010. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem. 21, 781–792.

Bansal G, Zhou W, Barlow PJ, Joshi P.S, Lo HL, Chung YK. 2010. Review of rapid tests available for measuring the quality changes in frying oils and comparison with standard methods. Crit. Rev. Food Sci. Nutr. 50 (6), 503–514.

Bejaoui S, Ghribi F, Telahigue K, Chetoui I, Rabeh I, Trabelsi W, Soudani NEL. Cafsı M. 2019. Phospholipids profile of the edible clams flesh during different frying processes. Bull. Inst. Natl. Sci. Technol. Mer de Salammbô. 46, 81–8.

Boselli E, Pacetti D, Lucci P, Frega NG. 2012. Characterization of Phospholipid Molecular Species in the Edible Parts of Bony Fish and Shellfish. J. Agric. Food Chem. 60 (12), 3234–3245.

Cengiz Eİ, Ünlü E, Başhan M, Satar A, Uysal E. 2012. Effects of seasonal variations on the fatty acid composition of total lipid, phospholipid and triacylglicerol in the dorsal muscle of Mesopotamian catfish (Silurus triostegusHeckel, 1843) in Tigris River (Turkey). Turk. J. Fish Aquat. Sci. 12, 33–39.

De Leonardis A, Macciola V. 2004. A study on the lipid fraction of Adriatic sardine fillets (Sardina pilchardus). Die Nahrung. 48, 209–212.

Drazen JC. 2007. Depth related trends in proximate composition of demersal fishes in the eastern North Pacific. Deep-Sea Res. 1 (54), 203–219.

Duncan DB. 1955. Multiple Range and Multiple F-Test. Biometrics. 11, 1–5.

Farabegoli F, Nesci S, Ventrella V, Badiani A, Albonetti S, Pirini M. 2019. Season and Cooking May Alter Fatty Acids Profile of Polar Lipids from Blue-Back Fish. Lipids. 54, 741–753.

Finot PA. 1997. Effect of processing and storage on the nutritional value of protein food. In: Food protein and their applicants (edited by S, Damodaran and A. Paraf). Pp. 551–576. New York, NY: Marcel Dekker.

Folch J, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of toplam lipides from animal tissues. J. Biol. Chem. 226, 497–509.

Garcia-Arias MT, Alvarez-Pontes MC, Garcia-Linares MC, Garcia- Fernandez FJ, Sanchez-Muniz. 2003. Cooking freezing reheating (CFR) of sardine (Sardine pilhardus) fillets. Effect of different cooking and reheating procedures on the proximate and fatty acid composition. Food Chem. 83, 349–356.

Idun-Acquah N, Obeng GY, Mensah E. 2016. Repetitive use of vegetable cooking oil and effects on physico-chemical properties–case of frying with redfish (Lutjanus fulgens). Sci. Technol. 6 (1), 8–14.

IFFO, 2017. International Fishmeal and Fish Oil Organisation, The importance of dietary EPA and DHA omega-3 fatty acids in the health of both animals and humans. Datasheet

Jurid LS, Zubairi SI, Kasim ZM, Ab KadirI. A. 2020. The effect of repetitive frying on physicochemical properties of refined, bleached and deodorized Malaysian tenera palm olein during deep-fat frying. Arab. J. Chem. 13 (7), 6149–6160.

Kaçar S, Kayhan Kaya H, Başhan M. 2023a. Triacylglycerol and Phospholipid classes of Capoetta umbla. J. Aquat. Food Prod. Technol. 32 (3), 244–255.

Kaçar S, KayhanKaya H, Başhan M. 2023b. Seasonal effect on fatty acid composition in phospholipid classes and triacylglycerols of male Capoeta umbla. Grasas Aceites. 74 (3), e521.

Kaushik SJ, Corraze G, Radunz-Neto J, Larroquet L, Dumas J. 2006. Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. J. Fish Biol. 68, 1376–1387.

Ketaona ADA, Clerge T, Bertrand NG. 2013. Quality of Ricinodendron heudelotii (Bail.) pierre ex pax seeds oil as affected by heating. Int. J. Eng. Res. Technol. 2, 94–100.

Little SO, Armstrong SG, Bergan JG. 2000. Fatty acids in foods and their health implications. In C. K. Chow (Ed.), Factors affecting stability and nutritive value of fatty acids: Culinary practices (2nd ed., pp. 427–437). New York, NY: Marcel Dekker.

Liu ZY, Zhou D, Rakarlyatham K, Xie HK, Li DY, Zhu BW, Shahidi F. 2019. Impact of Frying on Changes in Clam (Ruditapes philippinarum) Lipids and Frying Oils: Compositional Changes and Oxidative Deterioration. J. Am. Oil. Chem. Soc. 96, 1367–1377.

Loughrill E, Zand N. 2016. An Investigation into the fatty acid content of selected fish-based commercial infant foods in the UK and the impact of commonly practiced re-heating treatments used by parents for the preparation of infant formula milks. Food Chem. 197, 783–789.

Moradi Y, Bakar J, Motalebi AA, Syed Muhamad SH, Man C. 2011. A Review on Fish Lipid: Composition and Changes During Cooking Methods. J. Aqua. Food Prod. Tech. 20, 379–390.

Osendarp SJM. 2011. The role of omega-3 fatty acids in child development. OCL, 18 (6), 307–313.

Rustan AC, Drevon CA. 2005. Fatty Acids: Structures and Properties. Enciclopedia of Life Sci. Wiley and Sons. pp 1–7.

SchneedorferováI, Tomcala A, ValterováI. 2015. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chem. 176, 205–211.

Stanley-Samuelson DW, Dadd RH. 1983. Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. J. Food Sci. Technol. 13, 549–558.

Suganthi A, Venkatraman C, Chezhian Y. 2015. Proximate composition of different fish species collected from Muthupet mangroves. Int. J. Fish Aquat. 2 (6), 420–423.

Tadesse A, Gebre A, Nigusse G, Tamiru D. 2020. Proximate composition, minerals and sensory acceptability of deep-fried Nile tilapia fish (Oreochromis niloticus) as influenced by repeated use of palm oil. Food Sci. Qual. Manag. 95, 19–28.

U.S.D.A. Food Safety and Inspection Service (2023, September 28). Safe Minimum Internal Temperature Chart. https://www.fsis.usda.gov/foodsafety/safe-food-handling-and-preparation/food-safety-basics/safetemperature-chart

Varljen J, Baticic L, Sincic-Modric G, Obersnel V, Kapovic M. 2004. Composition and seasonal variation of fatty acids of Diplodus vulgaris L. from the Adriatic Sea. J. Am. Oil Chem. Soc. 81, 759–763.

Zarulakmam M, Hartina MU, Izzreen MNQ, Wafin HNW, Yusoff MM, Ismail-Fitry MR, Rozzamri A. 2021. Physicochemical and sensory analysis of surimi sausage incorporated with rolled oat powder subjected to frying. Int. Food Res. J. 28 (3), 457–466.

Publicado

2024-09-30

Cómo citar

1.
Akgül N, Başhan M, Kaçar S. Efectos del cocinado de filetes de pescado dorado (Coryphaena hippurus) con diferentes técnicas sobre su composición en ácidos grasos de fosfolípidos y triacilglicéricos. Grasas aceites [Internet]. 30 de septiembre de 2024 [citado 22 de febrero de 2025];75(3):2188. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2188

Número

Sección

Investigación

Datos de los fondos

Dicle Üniversitesi
Números de la subvención DUAPK- FBE.21.019