Enzymatic modification of phosphatidylcholine with n-3 PUFA from silkworm oil fatty acids
DOI:
https://doi.org/10.3989/gya.097213Keywords:
α-linolenic acid, Egg phosphatidylcholine, Lipase, Nutraceuticals, Silkworm oilAbstract
α-Linolenic acid (ALA) containing phosphatidylcholine (PC) was prepared by an enzymatic method employing natural substrates comprising of egg and eri silkworm oil. Eri silkworm oil extracted from eri pupae was saponified to obtain the fatty acid mixture which was further subjected to urea complexation to obtain an ALA rich fraction with a purity of about 93%. Transesterification of PC with the ALA rich fraction with three immobilized lipases namely Lipozyme TL IM, Lipozyme RM IM and lipase from Candida Antarcticaz showed that only the lipase from Candida antarctica was successful for the incorporation of ALA into egg yolk PC. It was found that ALA was incorporated by up to 27% in the sn-1 position of egg PC and the positional distribution analysis of fatty acids in the modified PC showed that the sn-1 position was found to contain about 59% ALA.
Downloads
References
Adlercreutz D, Budde H, Wehtje E. 2002. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnol. Bioeng. 78, 403–411. http://dx.doi.org/10.1002/bit.10225 PMid:11948447
Baeza-Jiménez R, González-Rodríguez J, Kim I, García HS, Otero C. 2012. Use of immobilized phospholipase A1-catalyzed acidolysis for the production of structured phosphatidylcholine with elevated conjugated linoleic acid content. Grasas Aceites 63, 44–52. http://dx.doi.org/10.3989/gya.045211
Barcelo-Coblijn G, Murphy EJ. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog. Lipid Res. 48, 355–374. http://dx.doi.org/10.1016/j.plipres.2009.07.002 PMid:19619583
Chakraborty K, Raj RP. 2007. Eicosapentaenoic Acid Enrichment from Sardine Oil by Argentation Chromatography. J. Agric. Food Chem. 55, 7586–7595. http://dx.doi.org/10.1021/jf071407r PMid:17650005
Chojnacka A, Gładkowski W, Kiełbowicz G, Wawrzenczyk C. 2009. Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnol. Lett. 31, 705–709. http://dx.doi.org/10.1007/s10529-009-9915-6 PMid:19165607
Christie WW. 1982. Structural analysis of lipids by means of enzymatic hydrolysis. Lipid Analysis, 2nd ed, Pergamon Press Ltd., Oxford, United Kingdom. pp 155–166.
Guo Z, Vikbjerg AF, Xu X. 2005. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol. Adv. 23, 203–259. http://dx.doi.org/10.1016/j.biotechadv.2005.02.001 PMid:15763405
Haraldsson GG, Thorarensen A. 1999. Preparation of Phospholipids Highly Enriched with n-3 Polyunsaturated Fatty Acids by Lipase. J. Am. Oil Chem. Soc. 76, 1143–1149. http://dx.doi.org/10.1007/s11746-999-0087-2
Hayes DG, Bengtsson YC, Van Alstine JM, Setterwall F. 1998. Urea Complexation for the Rapid, Ecologically Responsible Fractionation of Fatty Acids from Seed Oil. J. Am. Oil Chem. Soc. 75, 1403–1409. http://dx.doi.org/10.1007/s11746-998-0190-9
Kaki SS, Shireesha K, Kanjilal S, Kumar SVLN, Srinivas C, Rao JVK, Prasad RBN. 2006. Isolation and Characterization of Neutral Lipids of Desilked Eri Silkworm Pupae Grown on Castor and Tapioca Leaves. J. Agric. Food Chem. 54, 3305–3309. http://dx.doi.org/10.1021/jf060581x PMid:16637689
Khodadadi M, Aziz S, St-Louis R, Kermasha S. 2013. Lipasecatalyzed synthesis and characterization of flaxseed oilbased structured lipids. J. Funct. Foods 5, 424–433. http://dx.doi.org/10.1016/j.jff.2012.11.015
Kiełbowicz G, Gładkowski W, Chojnacka A, Wawrzenczyk C. 2012. A simple method for positional analysis of phosphatidylcholine. Food Chem 135, 2542–2548. http://dx.doi.org/10.1016/j.foodchem.2012.07.005 PMid:22980840
Kim MR, Shim JY, Park KH, Imm BJ, Oh S, Imm JY. 2009. Optimization of the enzymatic modification of egg yolk by phospholipase A2 to improve its functionality for mayonnaise production. Food Sci. Technol. 42, 250–255.
Larsson K, Quinn PJ. 1994. Lipid-water interaction and liquidcrystalline phases in F.D. Gunstone, J.L. Harwood, and F.B. Padley (Ed.). The Lipid Handbook, Chapman and Hall, London, pp. 407–416.
Longvah T, Manghtya K, Qadri SSYH. 2012. Eri silkworm: a source of edible oil with a high content of α-linolenic acid and of significant nutritional value. J. Sci. Food Agric. 92, 1988–1993. http://dx.doi.org/10.1002/jsfa.5572 PMid:22290445
Lyberg AM, Fasoli E, Adlercreutz P. 2005. Monitoring the Oxidation of Docosahexaenoic Acid in Lipids. Lipids 40, 969–979. http://dx.doi.org/10.1007/s11745-005-1458-1 PMid:16329470
Mbatia M, Kaki SS, Bo M, Adlercreutz P. 2011. Enzymatic Synthesis of Lipophilic Rutin and Vanillyl Esters from Fish Byproducts. J. Agric. Food Chem. 59, 7021–7027. http://dx.doi.org/10.1021/jf200867r PMid:21630661
Nguemeni C, Gouix E, Bourourou M, Heurteaux C, Blondeau N. 2013. Alpha-linolenic acid: A promising nutraceutical for the prevention of stroke. Pharma Nutrition 1, 1–8. http://dx.doi.org/10.1016/j.phanu.2012.12.002
Rao PU. 1994. Chemical composition and nutritional evaluation of spent silkworm pupae. J. Agric. Food Chem. 42, 2201–2203. http://dx.doi.org/10.1021/jf00046a023
Reddy JRC, Vijeeta T, Karuna MSL, Rao BVSK, Prasad RBN. 2005. Lipase-Catalyzed Preparation of Palmitic and Stearic Acid-rich Phosphatidylcholine. J. Am. Oil Chem. Soc. 82, 727–730. http://dx.doi.org/10.1007/s11746-005-1134-x
Singh KC, Suryanarayana N 2003. Eri pupae: A popular cuisine too. Indian Silk 41, 57–58.
Svensson I, Adlercreutz P, Mattiasson B, Miesia Y, Larsson K. 1993. Phase behaviour of aqueous systems of enzymatically modified phosphatidylcholines with one hexadecyl and one hexyl or octyl chain. Chem. Phys. Lipids 66, 195–197. http://dx.doi.org/10.1016/0009-3084(93)90005-N
Virto C, Adlercreutz P. 2000. Lysophosphatidylcholine synthesis with Candida antarctica lipase B (Novozym 435). Enzyme Microb. Technol. 26, 630–635. http://dx.doi.org/10.1016/S0141-0229(00)00147-2
Xu J, Yang W, Deng Q, Huang Q, Yang J, Huang F. 2012. Flaxseed oil and α-lipoic acid combination reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids in Health Disease 11, 148. http://dx.doi.org/10.1186/1476-511X-11-148 PMid:23113997 PMCid:PMC3502139
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.