Fatty acid composition of phospholipids and triacylglycerols in the flesh of the thick-lipped grey mullet (Chelon labrosus) living in Tunisian geothermal water and seawater: A comparative study





Fatty acid composition, Geothermal water, Phospholipids, Seawater thick-lipped grey mullet (Chelon labrosus), Triacylglycerols


This study was conducted to elucidate the effects of rearing conditions on the composition of different phospholipid (PLs) classes and triacylglycerols (TAG) of the thick-lipped grey mullet (Chelon labrosus), a muscle originating from seawater and geothermal water. The major fatty acids in the examined lipid classes of the two fish groups were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n-9), linoleic acid (C18:2n-6), arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3). The analyses demonstrated that the fatty acid profiles of the PL classes in the seawater fish group were characterized by the predominance of n-3 polyunsaturated fatty acids (PUFA). By contrast, in geothermal fish, the distribution of PUFA series proportions differed between the phospholipid fractions. It was found PUFA n-3 was particularly abundant in PS and PI, while the n-6 series dominated the PC and PE PUFA group. Nonetheless, it was found that neutral lipid fatty acids were characterized by saturated fatty acids (SFA) followed by monounsaturated fatty acids (MUFA) in the seawater fish and by PUFA in the geothermal fish. The results presented here give useful information on the role of lipid classes in the physiological adaptation of C. labrosus which can serve for the optiminzation of these aquaculture systems.


Download data is not yet available.


Applegate KR, Glomset JA. 1986. Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J. Lipid Res. 27, 658-680. https://doi.org/10.1016/S0022-2275(20)38805-2

Alasalvar C, Taylor KDA, Zubcov E, Shahidi F, Alexis M. 2002. Differentiation of cultured and wild sea bass (Dicentrarchuslabrax): total lipid content, fatty acid and trace mineral composition. Food Chem. 79, 145-150. https://doi.org/10.1016/S0308-8146(02)00122-X

Arts MT, Brett MT, Kainz MJ. 2009. Lipids in Aquatic Ecosystems, Springer, New York, p. 377.

Azaza MS, Besbesbenseddik A, Besbes R, Kraiem MM, M'rabet R. 2008a. Adaptation du mulet d'élevage Chelon labrosus (poisson, téléostéen) aux eaux géothermales. Dixièmes Journées Tunisiennes des Sciences de la Mer et de la Première Rencontre Tuniso-Française d'Ichtyologie.

Azaza MS, Dhraïef MN, Kraiem MM. 2008b. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J. Therm. Biol. 33, 98-105. https://doi.org/10.1016/j.jtherbio.2007.05.007

Ben Khemis I, Gisbert E, Alcaraz C, Zouiten D, Besbes R, Zouiten A, Masmoudi AA, Cahu C. 2013. Allometric growth patterns and development in larvae and juveniles of thick-lipped grey mullet Chelon labrosus reared in mesocosm conditions. Aquac. Res. 44, 1872-1888. https://doi.org/10.1111/j.1365-2109.2012.03192.x

Ben Khemis I, Hamza N, Sadok, S. 2019. Nutritional quality of the fresh and processed grey mullet (Mugilidae) products: a short review including data concerning fish from freshwater. Aquat. Living Resour 32, 2. https://doi.org/10.1051/alr/2018026

Besbes R, Besbes Benseddik A, Kokokiris L, Changeux T, Hamza A, Kammoun F, Missaoui H. 2020. Thicklip (Chelon labrosus) and flathead (Mugil cephalus) grey mullets fry production in Tunisian aquaculture. Aquacult Rep. 17, 100-380. https://doi.org/10.1016/j.aqrep.2020.100380

Borlongan IG, Benitez LV. 1992. Lipid and fatty acid composition of milkfish (ChanoschanosForsskal) grown in freshwater and seawater. Aquaculture 104, 79-89. https://doi.org/10.1016/0044-8486(92)90139-C

Brown MF. 1994. Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159-180. https://doi.org/10.1016/0009-3084(94)90180-5

Bruslé J .1981. Food and feeding in grey mullet. In: Oren, O. H. (Ed.), Aquaculture of the Grey Mullet. Cambridge Univ. Press, Cambridge.

Cardona L .2006. Habitat selection by grey mullets (Osteichthyes: Mugilidae) in Mediterranean estuaries: the role of salinity. Sci Marpp. 70, 443-455. https://doi.org/10.3989/scimar.2006.70n3443

Castell JD, Sinnhuber RO, Wales JH, Lee DJ. 1972. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102, 77. https://doi.org/10.1093/jn/102.1.77 PMid:5007119

Cecchi G, Basini S, Castano C. 1985. Méthanolyse rapide des huiles en solvant [Rapid methanolysis of oils in solvent]. R. Franç. Corps Gras. 32, 163-164.

Cengiz EI, Ünlü1 E, Bashan M, Ali Satar A, Uysal E. 2012. Effects of Seasonal Variations on the Fatty Acid Composition of Total Lipid, Phospholipid and Triacylglicerol in the Dorsal Muscle of Mesopotamian Catfish (Silurus triostegus Heckel, 1843) in Tigris River (Turkey). Tur. J. Fish. Aquat. Sci. 12 33-39.

Cossins AR, Prosser CL. 1978. Evolutionary adaptation of membranes to temperature. Proc. Natl. Acad. Sci. USA, 75, 2040-2043. https://doi.org/10.1073/pnas.75.4.2040 PMid:273929 PMCid:PMC392479

Crosetti D. 2016. Current state of capture fisheries and culture of Mugilidae, in: D. Crosetti, S.J.M. Blaber (Eds.), Biology, Ecology and Culture of Grey Mullets (Mugilidae), CRC Press, Boca Raton, FL, pp. 398-450. https://doi.org/10.1201/b19927

De las Heras V, Martos-Sitcha JA, Yúfera M, Mancera JM, Martínez-Rodríguez G. 2015. Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet (Chelon labrosus) juveniles. Aquaculture. 448, 29-37. https://doi.org/10.1016/j.aquaculture.2015.05.033

Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ. 1998. Regulation of hepatic lipogenesis by dietary protein/energy ratio in juvenile European seabass (Dicentrarchuslabrax). Aquaculture 161, 169-186. https://doi.org/10.1016/S0044-8486(97)00268-8

El Cafsi M, Romdhane MS, Chaouch A, Masmoudi W, Kheriji S, Chanussot F, Cherif A. 2003. Qualitative needs of lipids by mullet, Mugil cephalus, fry during freshwater acclimatation. Aquaculture. 225, 233-241. https://doi.org/10.1016/S0044-8486(03)00292-8

FAO 2015a. Mediterranean coastal lagoons: sustainable management and interactions among aquaculture, capture fisheries and the environment, in: S. Cataudella, D. Crosetti, F. Massa (Eds.), Studies and Reviews, General Fisheries Commission for the Mediterranean, No. 95, Rome.

FAO 2020. The State of World Fisheries and Aquaculture 2020. Aquaculture Paper No. 634. Rome, pp 16.

Fazio F, Marafioti S, Arfuso F, Piccione, G, Faggio C. 2013. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugilcephalus. Marine Freshwater Beh. Physiol. 46 (4), 211-218. https://doi.org/10.1080/10236244.2013.817728

Fokina NN, Ruokolainen TR, Nemova NN .2017. Lipid composition modifications in the blue mussels (Mytilus edulis L.) from the White Sea. In: RAY S (ed.) Organismal and Molecular Malacology, Intech, Rijeka. https://doi.org/10.5772/67811

Folch J, Lees M, Sloane-Stanley GA. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5

Glencross BD. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 1, 71-124. https://doi.org/10.1111/j.1753-5131.2009.01006.x

Haliloglu HI, Bayir A, Sirkecioglu AN, Aras NM, Atamanalp M. 2004. Comparision of fatty acid composition in some tissues of rainbow trout (Oncorhyncus mykiss) living in seawater and freshwater. Food Chem. 86, 55-59. https://doi.org/10.1016/j.foodchem.2003.08.028

Hazel JR. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann. Rev. Physiol. 57, 19-42. https://doi.org/10.1146/annurev.ph.57.030195.000315 PMid:7778864

Herrera M, Vargas-Chacoff L, Hachero I, Ruiz-Jarabo I, Rodiles A, Navas JI, Mancera JM. 2009. Osmoregulatory changes in wedge sole (Dicologlossacuneata Moreau, 1881) after acclimation to different environmental salinities. Aquac. Res. 40, 762-771. https://doi.org/10.1111/j.1365-2109.2008.02147.x

Kaushik SJ, Corraze G, Radunz-Neto J, Larroquet L, Dumas J. 2006. Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. J. Fish Biol. 68, 1376-1387. https://doi.org/10.1111/j.0022-1112.2006.01005.x

Kheriji S, El Cafsi M, Masmoudi W, Castell JD, Romdhane MS. 2003. Salinity and temperature effects onthe lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquacult Int. 11, 571-582. https://doi.org/10.1023/B:AQUI.0000013321.93743.6d

Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, Harel M, Behrens P, Tandler A. 2001. The effect of dietary arachidonic acid (20:4 n6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193, 107-122. https://doi.org/10.1016/S0044-8486(00)00479-8

Los DA. 2001. Structure, regulation of expression and functioning of fatty acid desaturases. Biol. Chem. Rev. 41, 163-198.

Losse GF, Nau W, Winter M. 1991. Le développement de la pêche en eau douce dans le nord de la Tunisie Projet de coopération technique Tuniso-Allemande, Projet "Utilisation de barrages pour la pisciculture," GTZ et CGP, pp 418.

Li EC, Arena L, Lizama G, Gaxiola G, Cuzon G, Rosas C. 2011. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannameito different salinities and dietary protein levels. Chin. J. Oceanol. Limnol. 29, 343-349. https://doi.org/10.1007/s00343-011-0093-8

Murzina SA, Pekkoeva SN, Kondakova EA, Nefedova ZA, Filippova KA, Nemova NN, Orlov AM, Berge J, Falk-Petersen S. 2020. Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules. 10, 368. https://doi.org/10.3390/biom10030368 PMid:32121136 PMCid:PMC7175246

Nordlie FG, Szelistowski WA, Nordlie WC. 1982. Ontogenesis of osmotic regulation in the striped mullet, Mugil cephalus L. J. Fish. Biol. 20, 79-86. https://doi.org/10.1111/j.1095-8649.1982.tb03896.x

Olsen R.E, Henderson RJ. 1989.The rapid analysis of neutral and polar marine 1448 lipids using double-development HPTLC and scanning densitometry. J. Exp. Mar.Biol. Ecol. 129, 189-197. https://doi.org/10.1016/0022-0981(89)90056-7

Rabeh I, Khaoula, Telahigue k, Gazali N, Chetoui I, Boussoufa D, Besbes R, Cafsi M. 2013. Time course of changes in fatty acid composition in the osmoregulatory organs of the thicklip grey mullet (Chelon labrosus) during acclimation to low salinity. Mar. Freshwater Behav. Physiol. 46, 59-73. https://doi.org/10.1080/10236244.2013.793470

Rabeh I, Telahigue K, Boussoufa D, Besbes R, El Cafsi MH. 2015. Comparative analysis of fatty acids profiles in muscle and liver ofTunisian thick lipped grey mullet Chelon labrosus reared inseawater and freshwater. J. Tunisian. Chem. Soc. 17, 95-104.

Sargent JR, Lee RF, Nevenzel JC. 1976. Marine waxes. In Kolattukudy, P. (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier Press, Amsterdam, pp. 50-91.

Sargent JR, Henderson RJ, Tocher DR. 1989. The lipids. pp.153-218. In: Fish Nutrition, second edition. (Halver, J. E., Ed.). New York: Academic Press.

Sargent JR, Bell JG, Bell MV, Henderson RJ, Tocher DR. 1993. The metabolism of phospholipids and polyunsaturated fatty acids in fish. In: Aquaculture: Fundamental and Applied Research. Coastal and Estuarine Studies (Lahlou, B. &Vitiello, P. eds.), vol. 43. pp103-124. American Geophysical Union, Washington, DC. https://doi.org/10.1029/CE043p0103

Sargent JR, Tocher DR and Bell JG. 2002. The lipids. pp. 181-257. In: Fish Nutrition, 3rd Edition, Ch.4. (Halver, J. E., Ed.). San Diego: Academic Press. https://doi.org/10.1016/B978-012319652-1/50005-7

Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611. https://doi.org/10.1093/biomet/52.3-4.591

Shirai N, Terayama M, Takeda H. 2002. Effect of season on the fatty acid composition and free amino acid content of the sardine Sardinops melanostictus. Comp. Biochem. Physiol. 131B, 387-393. https://doi.org/10.1016/S1096-4959(01)00507-3

Smith RL, Soeters MR, Wust RCI, Houtkooper RH. 2018. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 39, 489-517. https://doi.org/10.1210/er.2017-00211 PMid:29697773 PMCid:PMC6093334

Somero GN. 2004. Adaptation of enzymes to temperature: searching for basic strategies. Comp. Biochem. Physiol B. 139, 321-333. https://doi.org/10.1016/j.cbpc.2004.05.003 PMid:15544958

Snyder RJ, Hennessey TM. 2003. Cold tolerance and homeoviscous adaptation in freshwater alewives Alosapseudoharengus. Fish Physiol. Biochem. 29, 117-126. https://doi.org/10.1023/B:FISH.0000035920.60817.11

Soengas JL, Sangiao-Alvarellos S, Láiz-Carrión R, Mancera J. 2007. Fish osmoregulation. In: Kapoor BG, editor. Energy metabolism and osmotic acclimation in teleost fish. Enfield: Science Publishers; p. 277-308. https://doi.org/10.1201/b10994-11

Sushchik NN, Makhutova ON , Rudchenko AE, Glushchenko LA , Shulepina SP, Kolmakova AA and Gladyshev MI.2020 Comparison of Fatty Acid Contents in Major Lipid Classes of Seven Salmonid Species from Siberian Arctic Lakes. Biomolecules. 10 (3), 419. https://doi.org/10.3390/biom10030419 PMid:32182700 PMCid:PMC7175364

Steffens W. 1997. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture. 151, 97-119. https://doi.org/10.1016/S0044-8486(96)01493-7

Stillwell W, Wassall SR .2003.Docosahexaenoic acid: Membrane properties of a unique fatty acid.Chem. Phys. Lipids 126, 1-27. https://doi.org/10.1016/S0009-3084(03)00101-4

Riekhof WR, Benning C. 2009. Glycerolipid biosynthesis. In: Stern D (ed.) The chlamydomonas source book: organellar and metabolic processes. Academic Press, Amsterdam, pp 41-68. https://doi.org/10.1016/B978-0-12-370873-1.00010-1

Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107-184. https://doi.org/10.1080/713610925

Zouiten D, Ben Khemis I, Besbes R, Cahu C. 2008. Ontogeny of the digestive tract of thick lipped grey mullet (Chelon labrosus) larvae reared in mesocosms. Aquaculture. 279, 166-172. https://doi.org/10.1016/j.aquaculture.2008.03.039

Wodtke E, Cossins AR. 1991. Rapid cold-induced changes of membrane order and delta-9-desaturase activity in endoplasmic reticulum of carp liver: a time-course study of thermal adaptation. Biochim. Biophys. Acta. 1064, 343-350. https://doi.org/10.1016/0005-2736(91)90321-X

Wallaert C, Babin PJ. 1994. Thermal adaptation affects the fatty acid composition of plasma phospholipids in trout. Lipids. 29, 373-376. https://doi.org/10.1007/BF02537193 PMid:27520036



How to Cite

Rabeh I, Telahigue K, Hajji T, Kheriji S, Besbes A, Besbes R, El Cafsi M. Fatty acid composition of phospholipids and triacylglycerols in the flesh of the thick-lipped grey mullet (Chelon labrosus) living in Tunisian geothermal water and seawater: A comparative study. grasasaceites [Internet]. 2022Mar.30 [cited 2023Dec.9];73(1):e448. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1922




Most read articles by the same author(s)