Rheological and microstructural study of concentrated sunflower oil in water emulsions stabilized by food proteins
DOI:
https://doi.org/10.3989/gya.2008.v59.i1.492Keywords:
Droplet Size Distribution, Emulsion, Linear Viscoelasticity, ProteinAbstract
Droplet Size Distribution (DSD) and linear viscoelastic properties of concentrated o/w emulsions stabilized by different proteins (crayfish, gluten and soybean) have been studied. A typical behaviour of highly concentrated emulsions with a high degree of flocculation has been found. An increase in energy input for the emulsification process or in emulsifier concentration leads to an increase in both viscoelastic moduli (G’, G’’) as well as to a decrease in droplet size. Thus, an enhancement of the entanglement network produced by association of protein molecules that are surrounding oil droplets or are present in the continuous phase takes place, leading to a significant improvement of emulsion stability.
Downloads
References
Arfvidsson C, Wahlund KG, Eliasson AC. 1992. Direct molecular weight determination in the evaluation of dissolution methods for unreduced glutenin. J. Cereal. Sci. 39(1), 1-8. doi:10.1016/S0733-5210(03)00038-9
Bengoechea C, Cordobés F, Guerrero A. 2006. Rheology and microstructure of gluten and soya-based o/w emulsions. Rheol. Acta 46, 13-21. doi:10.1007/s00397-006-0102-6
Carceller JL, Aussenac T. 2002. Size characterization of glutenin polymers by HPSEC-MALLS. J. Cereal Sci. 33(2), 131-142. doi:10.1006/jcrs.2000.0356
Chen J, Dickinson E. 1998. Viscoelastic properties of protein- stabilized emulsions: Effect of protein-surfactant interactions. J. Agric. Food Chem. 46, 91-97. doi:10.1021/jf970536c
Dickinson E, Flint FO, Hunt JA. 1989. Brindging flocculation in binary protein stabilized emulsions. Food Hydrocoll. 3, 389.
Finch R. 1977. Whatever happened to fish protein concentrate. Prospects for success still not very bright. Food Technol. 31, 44-53.
Franco JM, Guerrero A, Gallegos C. 1995. Rheology and processing of salad dressing emulsions. Rheol. Acta 34, 513-524. doi:10.1007/BF00712312
Fukushima D. 1991. Structures of plant storage proteins and their functions. Food Rev. Int. 7(3), 353-381.
Hoseney RC, Rogers DE. 1990. The formation and properties of wheat flour doughs. CRC Crit. Rev. Food Sci. Nutr. 29(2):73-93.
Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. 1992. Glass transition of gluten 2: the effects of lipids and emulsifiers. Int. J. Biol. Macromol. 1, 267-273. doi:10.1016/S0141-8130(05)80039-X
Malhotra A, Coupland JN. 2004. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates, Food Hydrocoll. 18(1),101-108. doi:10.1016/S0268-005X(03)00047-X
Mejri M, Rogé B, BenSouissi A, Michels F, Mathlouthi M. 2005. Effects of some additives on wheat gluten solubility: A structural approach, Food Chem. 92(1) 7-15. doi:10.1016/j.foodchem.2004.07.021
Molina Ortiz SM, Puppo MC, Wagner JR. 2004. Relationship between structural changes and functional properties of soy protein isolates–carrageenan systems, Food Hydrocoll. 18(6), 1045-1053. doi:10.1016/j.foodhyd.2004.04.011
Morales A, Kokini JL. 1997. Glass transition of soy globulins using DSC and mechanical spectrometry. Biotechnol. Prog. 13, 624-629. doi:10.1021/bp9700519
Partal P, Guerrero A, Berjano M, Gallegos C. 1997. Influence of concentration and temperatura on the flor behaviour of O/W emulsions stabilized by a surcrose palmitate. J. Am. Oil. Chem. Soc.74, 1203-1212. doi:10.1007/s11746-997-0046-8
Petursson S, Decker EA, McClements DJ. 2004. Stabilization of oil-in-water emulsions by cod protein extracts. J. Agric. Food Chem. 52, 3996-4001. doi:10.1021/jf035251g
Puppo MC, Speroni F, Chapleau N, de Lamballerie M, Añón MC, Antón M. 2005. Food Hydrocoll. 19, 289-296. doi:10.1016/j.foodhyd.2004.07.001
Rahalkar RR. 1992. Viscoelastic properties of oil water emulsions en Rao MA, Steffe JF (Eds.) Viscoelastic Properties of Foods. Elsevier Applied Science, Londres.
Romero A, Cordobes F, Puppo MC, Guerrero A, Bengoechea C (2007) Rheology and droplet size distribution of emulsions stabilized by crayfish flour.
Sánchez MC, Berjano M, Brito E, Guerrero A, Gallegos C. 1998. Evolution of the microstructure and rheology of o/w emulsions during the emulsification process. Can. J. Chem. Eng. 76, 479-485.
Spinelli J, Groninger H, Koury B, Miller R. 1975. Functional Protein Isolates and Derivates from Fish Muscle. Process Biochem. 31-35.
Suzuki T. 1981. Fish and Krill Protein: Processing Techonology, Applied Science Publishers, LTD, London.
Tcholokova S, Denkov ND, Ivanov IB, Campbell B. 2002. Coalescence in lactoglobulin-stabilized emulsions: Effect of protein adsoption and drop size. Langmuir 18, 8960-8971. doi:10.1021/la0258188
Wu S. 1989. Chain structure and entanglement. J. Polym. Sci. 27, 723-741.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.