Rheological and microstructural study of concentrated sunflower oil in water emulsions stabilized by food proteins

Authors

  • C. Bengoechea Departamento de Ingeniería Química, Universidad de Sevilla
  • A. Romero Departamento de Ingeniería Química, Universidad de Sevilla
  • F. Cordobés Departamento de Ingeniería Química, Universidad de Sevilla
  • A. Guerrero Departamento de Ingeniería Química, Universidad de Sevilla

DOI:

https://doi.org/10.3989/gya.2008.v59.i1.492

Keywords:

Droplet Size Distribution, Emulsion, Linear Viscoelasticity, Protein

Abstract


Droplet Size Distribution (DSD) and linear viscoelastic properties of concentrated o/w emulsions stabilized by different proteins (crayfish, gluten and soybean) have been studied. A typical behaviour of highly concentrated emulsions with a high degree of flocculation has been found. An increase in energy input for the emulsification process or in emulsifier concentration leads to an increase in both viscoelastic moduli (G’, G’’) as well as to a decrease in droplet size. Thus, an enhancement of the entanglement network produced by association of protein molecules that are surrounding oil droplets or are present in the continuous phase takes place, leading to a significant improvement of emulsion stability.

Downloads

Download data is not yet available.

References

Arfvidsson C, Wahlund KG, Eliasson AC. 1992. Direct molecular weight determination in the evaluation of dissolution methods for unreduced glutenin. J. Cereal. Sci. 39(1), 1-8. doi:10.1016/S0733-5210(03)00038-9

Bengoechea C, Cordobés F, Guerrero A. 2006. Rheology and microstructure of gluten and soya-based o/w emulsions. Rheol. Acta 46, 13-21. doi:10.1007/s00397-006-0102-6

Carceller JL, Aussenac T. 2002. Size characterization of glutenin polymers by HPSEC-MALLS. J. Cereal Sci. 33(2), 131-142. doi:10.1006/jcrs.2000.0356

Chen J, Dickinson E. 1998. Viscoelastic properties of protein- stabilized emulsions: Effect of protein-surfactant interactions. J. Agric. Food Chem. 46, 91-97. doi:10.1021/jf970536c

Dickinson E, Flint FO, Hunt JA. 1989. Brindging flocculation in binary protein stabilized emulsions. Food Hydrocoll. 3, 389.

Finch R. 1977. Whatever happened to fish protein concentrate. Prospects for success still not very bright. Food Technol. 31, 44-53.

Franco JM, Guerrero A, Gallegos C. 1995. Rheology and processing of salad dressing emulsions. Rheol. Acta 34, 513-524. doi:10.1007/BF00712312

Fukushima D. 1991. Structures of plant storage proteins and their functions. Food Rev. Int. 7(3), 353-381.

Hoseney RC, Rogers DE. 1990. The formation and properties of wheat flour doughs. CRC Crit. Rev. Food Sci. Nutr. 29(2):73-93.

Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. 1992. Glass transition of gluten 2: the effects of lipids and emulsifiers. Int. J. Biol. Macromol. 1, 267-273. doi:10.1016/S0141-8130(05)80039-X

Malhotra A, Coupland JN. 2004. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates, Food Hydrocoll. 18(1),101-108. doi:10.1016/S0268-005X(03)00047-X

Mejri M, Rogé B, BenSouissi A, Michels F, Mathlouthi M. 2005. Effects of some additives on wheat gluten solubility: A structural approach, Food Chem. 92(1) 7-15. doi:10.1016/j.foodchem.2004.07.021

Molina Ortiz SM, Puppo MC, Wagner JR. 2004. Relationship between structural changes and functional properties of soy protein isolates–carrageenan systems, Food Hydrocoll. 18(6), 1045-1053. doi:10.1016/j.foodhyd.2004.04.011

Morales A, Kokini JL. 1997. Glass transition of soy globulins using DSC and mechanical spectrometry. Biotechnol. Prog. 13, 624-629. doi:10.1021/bp9700519

Partal P, Guerrero A, Berjano M, Gallegos C. 1997. Influence of concentration and temperatura on the flor behaviour of O/W emulsions stabilized by a surcrose palmitate. J. Am. Oil. Chem. Soc.74, 1203-1212. doi:10.1007/s11746-997-0046-8

Petursson S, Decker EA, McClements DJ. 2004. Stabilization of oil-in-water emulsions by cod protein extracts. J. Agric. Food Chem. 52, 3996-4001. doi:10.1021/jf035251g

Puppo MC, Speroni F, Chapleau N, de Lamballerie M, Añón MC, Antón M. 2005. Food Hydrocoll. 19, 289-296. doi:10.1016/j.foodhyd.2004.07.001

Rahalkar RR. 1992. Viscoelastic properties of oil water emulsions en Rao MA, Steffe JF (Eds.) Viscoelastic Properties of Foods. Elsevier Applied Science, Londres.

Romero A, Cordobes F, Puppo MC, Guerrero A, Bengoechea C (2007) Rheology and droplet size distribution of emulsions stabilized by crayfish flour.

Sánchez MC, Berjano M, Brito E, Guerrero A, Gallegos C. 1998. Evolution of the microstructure and rheology of o/w emulsions during the emulsification process. Can. J. Chem. Eng. 76, 479-485.

Spinelli J, Groninger H, Koury B, Miller R. 1975. Functional Protein Isolates and Derivates from Fish Muscle. Process Biochem. 31-35.

Suzuki T. 1981. Fish and Krill Protein: Processing Techonology, Applied Science Publishers, LTD, London.

Tcholokova S, Denkov ND, Ivanov IB, Campbell B. 2002. Coalescence in lactoglobulin-stabilized emulsions: Effect of protein adsoption and drop size. Langmuir 18, 8960-8971. doi:10.1021/la0258188

Wu S. 1989. Chain structure and entanglement. J. Polym. Sci. 27, 723-741.

Downloads

Published

2008-03-30

How to Cite

1.
Bengoechea C, Romero A, Cordobés F, Guerrero A. Rheological and microstructural study of concentrated sunflower oil in water emulsions stabilized by food proteins. grasasaceites [Internet]. 2008Mar.30 [cited 2021Dec.9];59(1):62-8. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/492

Issue

Section

Research

Most read articles by the same author(s)