Biotechnological alternatives for omega-3 polyunsaturated fatty acids production

Authors

  • I. Hinzpeter Departamento de Gobierno y Empresa. Universidad de Los Lagos
  • C. Shene Departamento de Ingeniería Química. Universidad de La Frontera
  • L. Masson Departamento de Ciencias de los Alimentos y Tecnología Química. Facultad de Ciencias Químicas y Farmacéuticas. Universidad de Chile

DOI:

https://doi.org/10.3989/gya.2006.v57.i3.57

Keywords:

DHA, Food supplement, Marine oils, Marine protists, Thraustochytrids.

Abstract


Fish oils are the main sources of omega-3 (ω3) polyunsaturated acids (PUFA) such as eicosapentaenoic (C20:5ω3) and docosahexaenoic (C22:6ω3) acids. World demand for ω3 PUFA shows an increasing trend mainly due to the growth of the aquaculture industry and also due to the increasing demand for specific PUFA used as food supplements. Bacteria, fungi, microalgae and thraustochytrids are biotechnological PUFA alternatives to fish oils. These sources are characterized by specific PUFA profiles whose productivity depends on strain and growth conditions. PUFA content in bacteria is low; microalgae synthesize mixtures of PUFA; fungi system productivity is low due to long  fermentation times. In heterotrofic cultures of thraustochytrids high concentrations of PUFA can be obtained. Moreover, many strains are able to synthesize a single ω3 PUFA. The optimization of fermentation systems and the development of technology capable of large-scale production are needed in order to make these alternatives feasible.

Downloads

Download data is not yet available.

References

Akimoto M, Ishii T, Yamagaki K, Ohtaguchi K, Koide K, Yazawa K. 1990. Production of eicosapentanoic acid by a bacterium isolated from mackerel intestines. J Am Oil Chem Soc 67, 911-915. doi:10.1007/BF02541846

Ando S, Nakajima K, Hatano M. 1992. Incorporation of n- 3 polyunsaturated fatty acids in phospholipids of a marine bacterium Vibrio sp. cultivated with sardine oil. J Ferm Bioeng 73, 169-171. doi:10.1016/0922-338X(92)90709-4

Bajpai P, Bajpai, PK. 1993. Eicosapentanoic acid (EPA) production from microorganisms: a review. J Biotechnol 30, 161-183. doi:10.1016/0168-1656(93)90111-Y

Barbosa MJGV. 2003. Microalgal photobioreactors: scale–up and optimization. Ph.D. Thesis.Wageningen University.Wageningen. The Netherlands.

Barclay WR. 1992. Process for the heterotrophic production of microbial oils with high concentrations of omega-3 highly unsaturated fatty acids. US Patent no.5,130,242.

Barclay WR, Meager KM, Abril, JR. 1994. Heterotrophic production of long chain omega- 3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6, 123-129. doi:10.1007/BF02186066

Barclay WR. 1994. Process for growing Thraustochytrium and Schizochytrium using non–chloride salts to produce a micro-floral biomass having omega-3 highly unsaturated fatty acids. US Patent no. 5,340,742.

Barclay W, Abril R, Abril P, Weaver C, Ashford A. 1998. Production of docosahexaenoic acid microalgae and its benefits for use in animal feeds. World Rev Nutr Diet 83, 61-76.

Barclay WR. 2001. Eggs containing high concentrations of omega-3 highly unsaturated fatty acids and methods for producing the same. US Patent no. 20010000151.

Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA. 1999. Long-chain n-3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexanoic acid production. J Biotechnol 70, 193-202. doi:10.1016/S0168-1656(99)00072-3

Carmona ML, Naganuma T, Yamaoka Y. 2003. Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN–1 Strain Isolated from the Seto Inland Sea. Bios Biotechnol Biochem 67, 884- 888. doi:10.1271/bbb.67.884

Certik M, Shimizu S. 1999. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87, 1-14. doi:10.1016/S1389-1723(99)80001-2

Cohen Z, Vonshak A, Richmond A. 1988. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24, 328-332.

Dick MW. 2001. Straminipilous fungi. Kluwer Academic Publisher. Doldrecht, Netherlands.

Fan KW, Chen F, Jones EBG, Vrijmoed LLP. 2001. Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. J Ind Microbiol Biotechnol 27, 199-202. doi:10.1038/sj.jim.7000169

Gandhi SR, Weete JD. 1991. Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. J Gen Microbiol 137, 1825-1830.

Hammond BG, Mayhew DA, Naylor MW, Ruecker FA, Mast RW, Sander WJ. 2001. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Reg Tox Pharm 33, 192-204. doi:10.1006/rtph.2001.1458

Hansson L, Dostalek M. 1988. Effect of culture conditions on mycelial growth and production of gamma linolenic acid by Mortierella ramanniana. Appl Microbiol Biotechnol 28, 240-246. doi:10.1007/BF00250448

Iwamoto H, Sato G. 1986. Production of EPA by freshwater unicellular algae. J Am Oil Chem Soc 63, 434-438.

Jang HD, Lin YY, Yang SS. 2000. Polyunsaturated fatty acid production with Mortierella alpina by solid substrate. Bot Bull Acad Sin 41, 41-48.

Jiang Y, Chen F, Liang S. 1999. Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Cryptheconidium cohnii. Process Biochem 34, 633-637. doi:10.1016/S0032-9592(98)00134-4

Kendrick A, Ratledge C. 1992. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27, 15-20. doi:10.1007/BF02537052

Kyle DJ. 1992. Microbial oil mixtures and uses thereof. International Patent Application, Patent Cooperation Treaty Publication WO 92/12711.

Kyle DJ, Gladue RM. 1991. Eicosapentanoic and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO 91/14427.

Mataix J. 2002. Los ácidos grasos omega-3. Mundo Científico 235, 46-51.

Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293, 291-293. doi:10.1126/science.1059593

Meyer A, Cirpus P, Ott C, Schlecker R, Zähringer U, Heiz E. 2003. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a ⊗4-fatty acyl group desaturase. Biochem 42, 9779-9788. doi:10.1021/bi034731y

Mo C, Rinkevich B. 2001. A simple, reliable, and fast protocol for Thraustochytrid DNA extraction. Mar Biotechnol 3, 100-102. doi:10.1007/s101260000069

Mo C, Douek J, Rinkevich B. 2002. Development of a PCR strategy for thraustochytrid identification based on 18S rDNA sequence. Mar Biol 140, 883-889. doi:10.1007/s00227-002-0778-9

Nettleton JA. 1993. Are n-3 fatty acids essential nutrients for fetal and infant development?. J Am Dietetic Assoc 93, 58-64. doi:10.1016/0002-8223(93)92132-H

Nichols DS, Nichols PD, McMeekin TA. 1993. Polyunsaturated fatty acids in antarctic bacteria. Antarct Sci 5, 149-160. doi:10.1017/S0954102093000215

Nichols DS, Sanderson K, Buia A, Van de Kamp J, Holloway P, Bowman JP, Smith M, Cancuso C, Nichols P, Nichols D, McMeekin TA. 2002. Jabour- Green, J. & Haward, M. (Eds). En “Bioprospecting and Biotechnology in Antarctica” in The Antarctic: Past, Present and Future. Antarctic CRC Research Report #28. Hobart, 85-103.

O’Brien DJ, Kurantz MJ, Kwoczak R. 1993. Production of eicosapentanoic acid by filamentous fungus Phytium irregulare. Appl Microbiol Biotechnol 40, 211-214. doi:10.1007/BF00170368

Qiu X. 2003. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4,7,10,13,16,19): two distinct pathways. Prost Leuk and Es Fat acids 68, 181-186.

Qiu X, Hong HP, Mackenzie SL. 2001. Identification of a ⊗4 fatty acid desaturase from Thraustochytrium sp. involved in biosynthesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276, 31561-31566. doi:10.1074/jbc.M102971200

Raghukumar S, Anil AC, Khandeparker L, Patil JS. 2000. Thraustochytrids protists as a component of marine microbial films. Mar Biol 136, 603-609. doi:10.1007/s002270050720

Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC. 2001. Production of docosahexaenoic acid (DHA) by Cryptheconidium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36, 1241-1246. doi:10.1007/s11745-001-0838-x

Rees JF, Cure K, Piyatiratitivorakul S, Sorgeloos P, Menasveta P. 1994. Highly unsaturated fatty acid requirements of Penaeus monodon postlarvae-an experimental approach based on Artemia enrichment. Aquaculture 122, 193-207. doi:10.1016/0044-8486(94)90510-X

Ringo E, Jostensen JP, Olsen RE. 1992. Production of eicosapentanoic acid by freshwater Vibrio. Lipids 27, 564-566. doi:10.1007/BF02536141

Roessler PG. 1990. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26, 393-399. doi:10.1111/j.0022-3646.1990.00393.x

Russell NJ, Nichols DS. 1999. Polyunsatured fatty acids in marine bacteria - a dogma rewritten. Microbiol 145, 767-779.

Saglik S, Imre S. 2001. ⌉3-Fatty Acids in some fish species from Turkey. J Food Sci 66, 210-212. doi:10.1111/j.1365-2621.2001.tb11318.x

Salhi M, Izquierdo MS, HernandezCruz CM, González M, FernandezPalacios H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval Gilthead seabream (Sparus aurata). Aquaculture 124, 275-282. doi:10.1016/0044-8486(94)90389-1

Sayanova OV, Napier JA. 2004. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochem 65, 147-158. doi:10.1016/j.phytochem.2003.10.017

Shinmen Y, Kawashima H, Shimizu S, Yamada H. 1992. Concentration of eicosapentanoic acid and docosahexaenoic acid in an arachidonic acidproducing fungus Mortierella alpina 1S-4, grown with fish oil. Appl Microbiol Biotechnol 38, 301-304.

doi:10.1007/BF00170076

Simopoulos AP. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54, 438-463.

Sinclair AJ, Murphy KJ, Li D. 2000. Marine lipids: overview, new insights and lipid composition of lyprinol. Allerg Immunol 32, 261-271.

Sinclair AJ, Abedin L. 2001.The effect of alpha-linolenic acid on retinal function in mammals. Chapter 7, Eds Shahidi F & Finley JW Omega 3 fatty acids: Chemistry, Nutrition & Health, 79-90. American Chemical Society Washington, DC.

Skerratt, J.H., Bowman, J.P., Nichols, P.D. 2002. Shewanella Olleyana sp. nov., a marine species isolated from a temperate estuary which produces hig levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52, 2102-2106. doi:10.1099/ijs.0.02351-0

Sparrow FK. 1936. Biological observations on the marine fungi of woods hole waters. Biol Bull 70, 236-263. doi:10.2307/1537470

Sparrow FK. 1943. The aquatic Phycomycetes exclusive of the Saprolegniaceae and Pythium. University of Michigan Press, Ann Arbor.

Sparrow FK. 1973. Mastigomycotina (Zoosporic fungi). En, The fungi, an advanced treatise. Vol IVB, Academic Press, New York.

Sprecher H. 1996. New Advances in fatty-acid biosynthesis. Nutrition 12, S5-7.

de Swaaf ME, Rijk TC, Eggink G, Sijtsma L. 1999. Optimization of docosahexaenoic acid production in batch cultivation by Crypthecodinium cohnii. J Biotechnol 70, 185-192. doi:10.1016/S0168-1656(99)00071-1

de Swaaf ME, Pronk JT, Sijtsma L. 2003. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61, 40-43.

Tanaka S, Yaguchi T, Shimizu S, Sogo T, Fujikawa S. 2003. Process for preparing docosahexaenoic acid and docosapentaenoic acid with ulkenia.US Patent no. 6,509, 178.

Uauy R, Peirano P, Hoffmann D, Mena P, Birch D, Birch E. 1996. Role of essential fatty acids in the function of the developing nervous system. Lipids 31, 167-176. doi:10.1007/BF02637071

Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashuhara T. 1997. Production of high yields of docosahexaenoic acid by Schizochytrium sp. J Am Oil Chem Soc 74, 1431-1434. doi:10.1007/s11746-997-0249-z

Yazawa K. 1996. Production of eicosapentanoic acid from marine bacteria. Lipids 31 Suppl: S297-300. doi:10.1007/BF02637095

Yokochi TD, Honda T, Higashihara, Nakahara T. 1998. Optimization of docosahexanoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49, 72-76. doi:10.1007/s002530051139

Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R. 2000. Production of eicosapentanoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35, 1061- 1064. doi:10.1007/s11745-000-0619-6

Downloads

Published

2006-09-30

How to Cite

1.
Hinzpeter I, Shene C, Masson L. Biotechnological alternatives for omega-3 polyunsaturated fatty acids production. Grasas aceites [Internet]. 2006Sep.30 [cited 2024Apr.19];57(3):336-42. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/57

Issue

Section

Research