Epoxidación de ésteres metílicos derivados del aceite de Jatropha: Optimización del estudio

Autores/as

  • M. Mushtaq Chemical Engineering Department, Universiti Technologi PETRONAS
  • Isa M. Tan Chemical Engineering Department, Universiti Technologi PETRONAS
  • M. Nadeem Subsurface Technology, PETRONAS Research Sdn. Bhd (PRSB)
  • C. Devi Chemical Engineering Department, Universiti Technologi PETRONAS
  • S. Y. C. Lee Chemical Engineering Department, Universiti Technologi PETRONAS
  • M. Sagir Chemical Engineering Department, Universiti Technologi PETRONAS
  • U. Rashid Institute of Advanced Technology, Universiti Putra Malaysia

DOI:

https://doi.org/10.3989/gya.084612

Palabras clave:

Aceite epoxidado de Jatropha, Caracterización, Metodología de superficie, Optimización, Respuesta

Resumen


Se ha evaluado la optimización de la reacción de epoxidación de ésteres metílicos obtenidos a partir de aceite de Jatropha. Se ha empleado para el diseño experimental una metodología de superficie de respuesta (RSM), basada en un diseño compuesto central giratorio (CCRD). Cuatro variables de la reacción fueron evaluadas: relación molar peróxido de hidrógeno/C=C, relación molar ácido fórmico/C=C, temperatura de reacción y tiempo de reacción. Las condiciones óptimas de epoxidación calculadas por el modelo cuadrático fueron 3.12 moles de peróxido de hidrógeno/C=C moles, 0.96 moles de ácido fórmico/C=C moles, una temperatura de reacción de 70.0 °C y un tiempo de reacción de 277 minutos. Una reacción optimizada mediante los parámetros propuestos del proceso proporciona un rendimiento de 92.89 ± 1.29% en peso con un tiempo de reacción relativamente mejorado. La concentración de peróxido de hidrógeno y la temperatura de la reacción fueron las variables más significativas, además la temperatura de la reacción y la concentración de peróxido de hidrógeno mostraron fuertes interacciones. Los ésteres metílicos epoxidados se analizaron mediante FT-IR, 1H RMN y RMN de 13C. Este estudio indica que se requiere una proporción molar relativamente mayor de ácido fórmico que la propuesta en la literatura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aerts H, Jacobs P. 2004. Epoxide yield determination of oils and fatty acid methyl esters using 1H NMR. J. Am. Oil Chem. Soc. 81, 841-846. http://dx.doi.org/10.1007/s11746-004-0989-1

Anwar F, Zafar SN, Rashid, U. 2006. Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. Grasas Aceites 57, 160-168. http://dx.doi.org/10.3989/gya.2006.v57.i2.32

Aslan N. 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol. 185, 80-86. http://dx.doi.org/10.1016/j.powtec.2007.10.002

Brossard-González CO, Ferrari RA, Pighinelli AL, Parka KJ. 2010. Preliminary evaluation of anhydrous ethanol as a solvent in the oilseed extraction of Jatropha curcas L. Grasas Aceites 61, 295-302.

Campanella, A.Baltanás, M. A. 2006. Degradation of the oxirane ring of epoxidized vegetable oils in liquidliquid heterogeneous reaction systems. Chem. Eng. J. 118, 141-152. http://dx.doi.org/10.1016/j.cej.2006.01.010

Campanella A, Fontanini C, Baltanas M. 2008a. High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Eng. J. 144, 466-475. http://dx.doi.org/10.1016/j.cej.2008.07.016

Campanella A, Fontanini C, Baltanás MA. 2008b. High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Eng. J. 144, 466-475. http://dx.doi.org/10.1016/j.cej.2008.07.016

Dahlke B, Hellbardt S, Paetow MZW. 1995. Polyhydroxy fatty acids and their derivatives from plant oils. J. Am. Oil Chem. Soc. 72, 349-353. http://dx.doi.org/10.1007/BF02541095

Doll K, Erhan S. 2006. Synthesis and performance of surfactants based on epoxidized methyl oleate and glycerol. J. Surfactants Deterg. 9, 377-383. http://dx.doi.org/10.1007/s11743-006-5016-x

Du G, Tekin A, Hammond E, Wood L. 2004. Catalytic epoxidation of methyl linoleate. J. Am. Oil Chem. Soc. 81, 477-480. http://dx.doi.org/10.1007/s11746-004-0926-3

Gan L, Goh S, Ooi K. 1992. Kinetic studies of epoxidation and oxirane cleavage of palm olein methyl esters. J. Am. Oil Chem. Soc. 69, 347-351. http://dx.doi.org/10.1007/BF02636065

Ghadge SV, Raheman H. 2006. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour. Technol. 97, 379-384. http://dx.doi.org/10.1016/j.biortech.2005.03.014 PMid:15908200

Goswami D, Basu JK, De S. 2012. Optimal hydrolysis of mustard oil to erucic acid: A biocatalytic approach. Chem. Eng. J. 181–182, 542-548. http://dx.doi.org/10.1016/j.cej.2011.11.070

Goud V, Pradhan N, Patwardhan A. 2006. Epoxidation of karanja (Pongamia glabra) oil by H2O2. J. Am. Oil Chem. Soc. 83, 635-640. http://dx.doi.org/10.1007/s11746-006-1250-7

Goud VV, Dinda S, Patwardhan AV, Pradhan NC. 2010. Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. Asia-Pac. J. Chem. Eng. 5, 346-354.

Goud VV, Patwardhan AV, Dinda S, Pradhan NC. 2007. Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chem. Eng. Sci. 62, 4065-4076. http://dx.doi.org/10.1016/j.ces.2007.04.038

Guillén MD, Cabo N. 1997a. Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 74, 1281-1286. http://dx.doi.org/10.1007/s11746-997-0058-4

Guillén MD, Cabo N. 1997b. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1-11. http://dx.doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R

Ibrahim HM, Abou-Arab AA, Abu-Salem FM. 2011. Antioxidant and antimicrobial effects of some natural plant extracts added to lamb patties during storage. Grasas Aceites 62, 139-148. http://dx.doi.org/10.3989/gya.066510

Jiang ST, Niu L. 2011. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62, 181-189. http://dx.doi.org/10.3989/gya.078710

Khlebnikova T, Pai Z, Fedoseeva L, Mattsat Y. 2009. Catalytic oxidation of fatty acids. II. Epoxidation and oxidative cleavage of unsaturated fatty acid esters containing additional functional groups. React. Kinet. Catal. Lett. 98, 9-17. http://dx.doi.org/10.1007/s11144-009-0054-9

Kleinová A, Fodran P, Brncalová, Cvengros J. 2008. Substituted esters of stearic acid as potential lubricants. Biomass Bioenerg. 32, 366-371. http://dx.doi.org/10.1016/j.biombioe.2007.09.015

Kumar A, Sharma S. 2008. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crop. Prod. 28, 1-10. http://dx.doi.org/10.1016/j.indcrop.2008.01.001

Lin B, Yang L, Dai H, Yi, A. 2008. Kinetic Studies on Oxirane Cleavage of Epoxidized Soybean Oil by Methanol and Characterization of Polyols. J. Am. Oil Chem. Soc. 85, 113-117. http://dx.doi.org/10.1007/s11746-007-1187-5

Miyake Y, Yokomizo K, Matsuzaki N. 1998. Determination of unsaturated fatty acid composition by highresolution nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 75, 1091-1094.

Mungroo R, Pradhan NC, Goud VV, Dalai AK. 2008. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 85, 887-896. http://dx.doi.org/10.1007/s11746-008-1277-z

Naidir F, Yunus R, Ramli I, Mohd-Ghazi TI. 2011. Response surface methodology for optimization of epoxidized trimethylolpropane ester synthesis from palm oil. Int. J. Chem. React. Eng. 9.

Petrovi ZS, Zlatani A, Lava CC, Sinadinovi-Fi?er S. 2002. Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids - kinetics and side reactions. Eur. J. Lipid Sci. Technol. 104, 293- 299. http://dx.doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W

Rashid U, Ibrahim M, Ali S, Adil M, Hina S, Bukhari I H,Yunus R. 2012. Comparative study of the methanolysis and ethanolysis of maize oils using alkaline catalysts. Grasas Aceites 63, 35-43. http://dx.doi.org/10.3989/gya.06891

Seniha-Güner F, Yagci Y, Tuncer-Erciyes A. 2006. Polymers from triglyceride oils. Prog. Polym. Sci. 31, 633-670. http://dx.doi.org/10.1016/j.progpolymsci.2006.07.001

Sun S, Ke X, Cui L, Yang G, Bi Y, Song F, Xu X. 2011. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind. Crop. Prod. 33, 676-682. http://dx.doi.org/10.1016/j.indcrop.2011.01.002

Vlek T, Petrovi Z. 2006. Optimization of the chemoenzymatic epoxidation of soybean oil. J. Am. Oil Chem. Soc. 83, 247-252. http://dx.doi.org/10.1007/s11746-006-1200-4

Wilson R, Smith R, Wilson P, Shepherd MJ, Riemersma RA. 1997. Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal. Biochem. 248, 76-85. http://dx.doi.org/10.1006/abio.1997.2084 PMid:9177726

Descargas

Publicado

2013-03-30

Cómo citar

1.
Mushtaq M, Tan IM, Nadeem M, Devi C, Lee SYC, Sagir M, Rashid U. Epoxidación de ésteres metílicos derivados del aceite de Jatropha: Optimización del estudio. Grasas aceites [Internet]. 30 de marzo de 2013 [citado 27 de julio de 2024];64(1):103-14. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1414

Número

Sección

Investigación