Caracterización química, térmica y viscosa de oleínas ácidas de girasol alto oleico y orujo de oliva y estólidos derivados

Autores/as

  • L. A. García-Zapateiro Departamento de Operaciones Unitarias. Facultad de Ingeniería. Grupo de Investigación Ingeniería de Fluidos Complejos y Reología de Alimentos (IFCRA). Universidad de Cartagena - Departamento de Ingeniería Química. Universidad de Huelva
  • J. M. Franco Departamento de Ingeniería Química. Universidad de Huelva - Pro2TecS – Chemical Process and Product Technology Research Center. Universidad de Huelva
  • C. Valencia Departamento de Ingeniería Química. Universidad de Huelva - Pro2TecS – Chemical Process and Product Technology Research Center. Universidad de Huelva
  • M. A. Delgado Departamento de Ingeniería Química. Universidad de Huelva - Pro2TecS – Chemical Process and Product Technology Research Center. Universidad de Huelva
  • C. Gallegos Departamento de Ingeniería Química. Universidad de Huelva - Pro2TecS – Chemical Process and Product Technology Research Center. Universidad de Huelva
  • M. V. Ruiz-Méndez Instituto de la Grasa (CSIC)

DOI:

https://doi.org/10.3989/gya.012513

Palabras clave:

Análisis térmico, Biolubricantes, Estólido, Oleínas ácidas de girasol alto oleico, Oleínas ácidas de orujo de oliva, Subproductos, Viscosidad

Resumen


Este trabajo presenta la caracterización química, térmica y viscosa de estólidos preparados a partir de oleínas ácidas de girasol alto-oleico y de orujo de oliva, utilizando diferentes métodos catalizados por ácidos y diferentes tiempos de reacción. Se obtuvieron estólidos con pesos moleculares promedios en peso entre 1,7 y 3,4 veces más altos que las oleínas de origen. El peso molecular de los estólidos aumenta cuando se utiliza el método catalizado por ácido sulfúrico y un tiempo de reacción de 3-6 h. Los estólidos obtenidos presentan temperaturas de congelación más altas que las oleínas. En general, los valores de viscosidad están relacionados con el peso molecular del estólido. Se encontraron incrementos significativos de viscosidad en comparación con las oleínas. Los valores máximos de viscosidad se obtuvieron para los estólidos preparados con el método catalizado por ácido sulfúrico. En los estólidos derivados de oleína de orujo de oliva se observaron los mayores incrementos de viscosidad durante las 6 primeras horas de reacción, debido al mayor aumento en el peso molecular. Tiempos más largos de reacción dan lugar a resultados desfavorables. La dependencia de la viscosidad con la temperatura de todos los estólidos es más importante que en las oleínas de partida.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Becker R, Knorr A. 1996. An evaluation of antioxidants for vegetable oils at elevated temperatures. Lubr. Sci. 8, 95-117. http://dx.doi.org/10.1002/ls.3010080202

Campella A, Rustoy E, Baldessari A, Baltanás MA. 2010. Lubricants from chemically modified vegetable oils. Bioresource Technol. 101, 245-254. http://dx.doi.org/10.1016/j.biortech.2009.08.035 PMid:19716696

Cermak SC, Isbell TA. 2001. Synthesis of estolides from oleic and saturated fatty acids. J. Am. Oil Chem. Soc. 78, 557-565. http://dx.doi.org/10.1007/s11746-001-0304-1

Cermak SC, Isbell TA. 2003. Improved oxidative stability of estolide esters. Ind. Crops Prod. 18, 223-230. http://dx.doi.org/10.1016/S0926-6690(03)00062-1

De Blas C, Mateos GG, Rebollar PG. 2003. Composición y valor nutritivo de alimentos para la formulación de piensos compuestos (2a ed.) Madrid, Espa-a. p 423.

Dumont MJ, Narine SS. 2007. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res. Int. 40, 957-974. http://dx.doi.org/10.1016/j.foodres.2007.06.006

Erhan SM, Robert PA, Thomas PA. 1996. Quantitation of estolides by Fourier Transform Infrared Spectroscopy J. Am. Oil Chem. Soc. 73, 563-567. http://dx.doi.org/10.1007/BF02518108

Erhan SZ, Perez JM. 2002. Biobased industrial fluids and lubricants. AOCS Press, Champaign II.

Erhan SZ, Asadauskas S. 2000. Lubricant basetocks from vegetable oils. Ind. Crops. Prod. 11, 277-282. http://dx.doi.org/10.1016/S0926-6690(99)00061-8

Garcés R, Martínez-Force E, Salas JJ. 2011. Vegetable oil basestocks for lubricants. Grasas y Aceites 62, 21-28. http://dx.doi.org/10.3989/gya.045210

García-Zapateiro LA, Delgado MA, Franco JM, Valencia C, Ruiz-Méndez MV, Garcés R, Gallegos C. 2010. Oleins as a source of estolides for biolubricant applications. Grasas y Aceites 61, 171-174. http://dx.doi.org/10.3989/gya.075209

Garcia-Zapateiro LA. Franco JM, Valencia C, Delgado, MC, Gallegos, C. 2013. Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived and their blends with vegetable oils. J. Ind. Eng. Chem. 19, 1289-1298 http://dx.doi.org/10.1016/j.jiec.2012.12.030

Govindapillai A. Jayadas NH, Bhasi M. 2009. Analysis of the pour point of coconut oil as a lubricant base stock using differential scanning calorimetry Lubr. Sci. 21 13-26.

Guillen MD, Cabo N. 1997. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food. Agric. 75, 1-11. http://dx.doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R

Hagemann JW. 1988. Thermal behaviour and polymorphism of acylglycerides . In N. Garti & K. Sato (Eds.), Crystallization and polymorphism of fats and fatty acids. New York, Marcel Dekker Inc.

Isbell TA, Abbott TP, Asadauskas S, Lohr JE. 2000. Biodegradable oleic estolide ester base stocks and lubricants. Patent no US 6,018,063.

Isbell TA, Kleiman R, Plattner BA. 1994. Acid-catalyzed condensation of oleic acid into estolides and polyestolides. J. Am. Oil Chem. Soc. 71, 169-174. http://dx.doi.org/10.1007/BF02541552

Isbell TA, Kleiman R. 1994. Characterization of estolides produced from the acid-catalized condensation of oleic acid. J. Am. Oil Chem. Soc. 71, 379-383. http://dx.doi.org/10.1007/BF02540517

Isbell TA, Edgcomb MR, Lowery BA. 2001. Physical properties of estolides and their ester derivatives. Ind. Crops Prod. 13 11-20. http://dx.doi.org/10.1016/S0926-6690(00)00045-5

Jiang Z, Hutchinson JM, Imrie CT. 2001. Measurement of the wax appearance temperatures of crude oils by temperature modulated differential scanning calorimetry. Fuel, 80, 367-371. http://dx.doi.org/10.1016/S0016-2361(00)00092-2

IUPAC. 1992. Method 2.301. "Standard methods for the analysis of oils fat and derivatives".- 1st supplement to 7th edition, Pergamon Press, Oxford.

Morselli-Ribeiro MDM, Arellano DB, Ferreira-Grosso CR. 2012. The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Res. Int. 47, 38-44. http://dx.doi.org/10.1016/j.foodres.2012.01.007

Mutlu H, Meier M. 2010. Castor oil as a renewable resource for the chemical industry Eur. J. Lipid Sci. Technol. 112 10-30. http://dx.doi.org/10.1002/ejlt.200900138

Quinchia LA, Delgado MA, Valencia C, Franco, JM Gallegos C. 2010. Viscosity modification of different vegetables oils with EVA copolymer for lubricant applications Ind. Crop Prod. 32 607-612.

Quinchia LA, Delgado MA, Franco JM, Spikes HA, Gallegos C. 2012. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind. Crop Prod. 37 383-388. http://dx.doi.org/10.1016/j.indcrop.2011.12.021

Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2009. Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil Green Chem. 11, 686-693. http://dx.doi.org/10.1039/b820547g

Suzuki M, Ogaki T, Sato K. 1985. Crystallization and transformation mechanisms of alpha,beta-polymorphs and gamma-polymorphs of ultra-pure oleic-acid. J. Am. Oil Chem. Soc. 62, 1600-1604. http://dx.doi.org/10.1007/BF02541697

Van de Voort FR, Isamail AA, Sedman J, Dubois J, Nicodemo T. 1994. The determination of peroxide value by fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 71, 921-926. http://dx.doi.org/10.1007/BF02542254

Vereecken J, Meeussen W, Foubert I, Lesaffer A, Wouters J, Dewettinck K. 2009. Comparing the crystallization and polymorphic behavior of saturated and unsaturated monglycerides. Food Res. Int. 45, 1415-1425. http://dx.doi.org/10.1016/j.foodres.2009.07.006

Vlahov G. 1999. Application of NMR to the study of the olive oils. Prog. Nuclear Mag. Res. Spect. 35, 341-357. http://dx.doi.org/10.1016/S0079-6565(99)00015-1

Woerfel JB. 1986. Soapstock in Proceedings of the world conference on emerging technologies in the fats and oils industry, A.R. Baldwin (Ed.) AOCS Press, USA, pp. 165-168.

Yazicigil Z, Ahmetli G. 2008. Synthesis of the fatty acid compounds obtained from sunflower oil refining products. J. Appl. Polym. Sci. 108, 541-547. http://dx.doi.org/10.1002/app.27691

Zerkowski JA. 2008. Estolides: From structure and function to structured and functionalized. Lipid Tech. 20, 253-256. http://dx.doi.org/10.1002/lite.200800066

Descargas

Publicado

2013-12-31

Cómo citar

1.
García-Zapateiro LA, Franco JM, Valencia C, Delgado MA, Gallegos C, Ruiz-Méndez MV. Caracterización química, térmica y viscosa de oleínas ácidas de girasol alto oleico y orujo de oliva y estólidos derivados. Grasas aceites [Internet]. 31 de diciembre de 2013 [citado 18 de mayo de 2024];64(5):497-508. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1456

Número

Sección

Investigación

Artículos más leídos del mismo autor/a

1 2 3 > >>