Obtención de shortenings cero-trans con alta estabilidad termo-oxidativa por transesterificación enzimática

Autores/as

DOI:

https://doi.org/10.3989/gya.0564191

Palabras clave:

Aceite de cánola, Ácido Esteárico, Cero-trans shortening, Estearina de palma, Fritura, Transesterificación enzimática

Resumen


Los innovadores shortenings cero-trans para frituras se obtenían por transesterificación enzimática utilizando como sustratos una mezcla de estearina de palma con aceite de cánola y ácido esteárico. Tanto las enzimas inmovilizadas (Novozym 435, Lipase PS “Amano” IM) como las no inmovilizadas (Lipomod TM 34P) fueron aplicadas como biocatalizadores. El contenido de ácido palmítico, el ácido graso que define el tipo adecuado de formación cristalina, fue del 15% en las mezclas de reacción. Los lípidos estructurados innovadores tenían propiedades físicas comparables a los shortenings comerciales y estabilidad de oxidación térmica similar en proceso de fritura. Los cristales en forma de aguja predominaban tanto en los productos de transesterificación como en los shortenings para frituras disponible en el mercado. Además, los perfiles de contenido de grasa sólida de los lípidos estructurados cero trans producidos por Novozym 435 y Lipase PS “Amano” IM eran similares a los perfiles de los shortenings comerciales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmadi L, Marangoni AG. 2009. Functionality and physical properties of interesterified high oleic shortening structured with stearic acid. Food Chem. 117, 668-673. https://doi.org/10.1016/j.foodchem.2009.04.072

Aladedunye F, Gruczynska E. 2019. Configuring phenolic antioxidants for frying applications, in Varelis P, Melton L, Shahidi F (Eds.). Encyclopedia of Food Chemistry. Elsevier, 54-62. https://doi.org/10.1016/B978-0-08-100596-5.21659-4

Aladedunye FA, Przybylski R. 2011. Rapid assessment of frying performance using small size samples of oils/fats. J. Am. Oil Chem. Soc. 88, 1867-1873. https://doi.org/10.1007/s11746-011-1874-0

AOAC. 1990. Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Arlington, VA, USA.

Barrera-Arellano D, Ruiz-Méndez V, Velasco J, Márquez-Ruiz G, Dobarganes C. 2002. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. J. Sci. Food Agric. 82, 1696-1702. https://doi.org/10.1002/jsfa.1245

Bonanom A, Grundy SM. 1988. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N. Engl. J. Med. 318, 1244-1248. https://doi.org/10.1056/NEJM198805123181905 PMid:3362176

Chavarro JE, Stampfer MJ, Campos H, Kurth T, Willett WC, Ma J. 2008. A prospective study of trans-fatty acid levels in blood and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 17, 95-101. https://doi.org/10.1158/1055-9965.EPI-07-0673 PMid:18199715

deMan JM. 1992. X-ray diffraction spectroscopy in the study of fat polymorphism. Food Res. Int. 25, 471−476. https://doi.org/10.1016/0963-9969(92)90172-2

Eckel RH, Borra S, Lichtenstein AH, Yin-Piazza SY. 2007. Understanding the complexity of trans fatty acid reduction in the American diet: American Heart Association Trans Fat Conference 2006: Report of the Trans Fat Conference Planning Group. Circulation 115, 2231-2246. https://doi.org/10.1161/CIRCULATIONAHA.106.181947 PMid:17426064

Firestone D. 2009. Official Methods and Recommended Practices of the American Oil Chemists' Society. 6th ed. Champaign, IL, USA.

Food & Drug Administration. 2003. Guidance for Industry. Food Labelling: Trans Fatty Acids in Nutrition Labelling, Nutrient Content Claims, and Health Claims. US Department of Health and Human Services. Federal Register 68, 41433-41506.

Gupta MK. 2017. Trans fats alternatives and challenges, in Gupta MK (Ed.) Practical Guide to Vegetable Oil Processing. AOCS Press, 341-374. https://doi.org/10.1016/B978-1-63067-050-4.00013-1

Hegsted DM, McGandy RB, Myers ML, Stare FJ. 1965. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr. 17, 281-295. https://doi.org/10.1093/ajcn/17.5.281 PMid:5846902

Idris NA, Berger KG, Ong ASH. 1989. Evaluation of shortenings based on various palm oil products. J Sci. Food Agric. 46, 481-493. https://doi.org/10.1002/jsfa.2740460410

ISO. 2007. Animal and Vegetable Fats and Oils - Determination of Polymerized Triglycerides Content by High Performance Size Exclusion Chromatography (HPSEC). Geneva, International Organization for Standardization [Standard 16931].

Kowalska D, Kostecka M, Tarnowska K, Kowalski B. 2014. Oxidative stabilities of enzymatically interesterified goose fat and rapeseed oil blend by rancimat and PDSC. J. Therm. Anal. Calorim. 115, 2063-2070. https://doi.org/10.1007/s10973-013-3125-0

Kowalski B, Tarnowska K, Gruczyńska E, Bekas W. 2004. Chemical and enzymatic interesterification of a beef tallow and rapeseed oil equal-weight blend. Eur. J. Lipid Sci. Technol. 106, 655-664. https://doi.org/10.1002/ejlt.200400973

Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J. 2006. Diet and lifestyle recommendations. Circulation 114, 82-96. https://doi.org/10.1161/CIRCULATIONAHA.106.176158 PMid:16785338

Marmesat S, Morales A, Velasco J, Dobarganes MC. 2010. Action and fate of natural and synthetic antioxidants during frying. Grasas Aceites 61, 333-340. https://doi.org/10.3989/gya.021910

Martin JC, Dobarganes MC, Nour M, Márquez-Ruiz G, Christie WW, Lavillonnière F, Sébédio JL. 1998. Effect of fatty acid positional distribution and triacylglycerol composition on lipid by-products formation during heat treatment: I. Polymer formation. J. Am. Oil Chem. Soc. 75, 1065-1071. https://doi.org/10.1007/s11746-998-0114-8

Metzroth D. 2005. Shortenings: Science and technology, in Shahidi F (Ed.) Bailey's Industrial Oil and Fat Products. A John Wiley & Sons Inc., Hoboken, New Jersey. https://doi.org/10.1002/047167849X.bio044

Przybylski R, Zambiazi RC. 2000. Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components. J. Am. Oil Chem. Soc. 77, 925-931. https://doi.org/10.1007/s11746-000-0146-x

Seppanen CM, Song Q, Csallany AS. 2010. The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food system. J. Am. Oil Chem. Soc. 87, 469-481. https://doi.org/10.1007/s11746-009-1526-9

Stier RF. 2013. Ensuring the health and safety of fried foods. Eur. J. Lipid Sci. Technol. 115, 956-964. https://doi.org/10.1002/ejlt.201300180

Uauy R, Aro A, Clarke R, Ghafoorunissa R, L'Abbé M, Mozaffarian D, Skeaff M, Stender S, Tavellaet M. 2009. WHO scientific update on trans fatty acids: summary and conclusions. Eur. J. Clin. Nutr. 63, S68-S75. https://doi.org/10.1038/ejcn.2009.15

Verleyen T, Kamal-Eldin A, Mozuraityte R, Verhe R, Dewettinck K, Huyghebaert A, De Greyt W. 2002. Oxidation at elevated temperatures: competition between a-tocopherol and unsaturated triacylglycerols. Eur. J. Lipid Sci. Technol. 104, 228-233. https://doi.org/10.1002/1438-9312(200204)104:4<228::AID-EJLT228>3.0.CO;2-5

Publicado

2020-12-04

Cómo citar

1.
Gruczynska-Sekowska E, Aladedunye F, Anwar F, Koczon P, Kowalska D, Kozlowska M, Majewska E, Tarnowska K. Obtención de shortenings cero-trans con alta estabilidad termo-oxidativa por transesterificación enzimática. Grasas aceites [Internet]. 4 de diciembre de 2020 [citado 27 de julio de 2024];71(4):e375. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1842

Número

Sección

Investigación