Grasas y Aceites, Vol 61, No 4 (2010)

Oil-in-water food emulsions stabilized by tuna proteins


https://doi.org/10.3989/gya.112309

D. Ruiz-Márquez
Departamento de Ingeniería Química. Universidad de Huelva. Facultad de Ciencias Experimentales. Campus del Carmen, Spain

P. Partal
Departamento de Ingeniería Química. Universidad de Huelva. Facultad de Ciencias Experimentales. Campus del Carmen, Spain

J. M. Franco
Departamento de Ingeniería Química. Universidad de Huelva. Facultad de Ciencias Experimentales. Campus del Carmen, Spain

C. Gallegos
Departamento de Ingeniería Química. Universidad de Huelva. Facultad de Ciencias Experimentales. Campus del Carmen, Spain

Abstract


This work is focused on the development of o/w salad dressing-type emulsions stabilized by tuna proteins. The influence of protein conservation methods after the extraction process (freezing or liofilization) on the rheological properties and microstructure of these emulsions was analyzed. Processing variables during emulsification were also evaluated. Stable emulsions with adequate rheological and microstructural characteristics were prepared using 70% oil and 0.50% tuna proteins. From the experimental results obtained, we may conclude that emulsion rheological properties are not significantly affected by the protein conservation method selected. On the contrary, an increase in homogenization speed favours an increase in the values of the linear viscoelastic functions. Less significant is the fact that as agitation speed increases further, mean droplet size steadily decreases.

Keywords


Emulsion; Freezing; Liofilization; Tuna proteins; Viscoelasticity

Full Text:


PDF

References


Baumgaertel M, De la Rosa ME, Machado J, Masse M, Winter HH. 1992. The Relaxation Time Spectrum of. Nearly Monodisperse Polybutadiene Melts. Rheol. Acta 31, 75-82. doi:10.1007/BF00396469

Bengochea C, Cordobés F, Guerrero A. 2006. Rheology and microstructure of gluten and soya-based o/w emulsions. Rheol. Acta 46, 13-21. doi:10.1007/s00397-006-0102-6

Dalgleish DG. 1996. Emulsion and Emulsion Stability, Sjöblom, J. (edss) Marcel Dekker, Nueva York.

Chapleau N, Lamballerie-Anton M. 2003. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocoll. 17, 273–280. doi:10.1016/S0268-005X(02)00077-2

De la Rosa ME, Winter HH. 1994. The effect of entanglements on the rheological behavior of polybutadiene critical gels. Rheol. Acta 33, 220-237. doi:10.1007/BF00437307

Dickinson E. 1989. Food Colloids—an overview. Colloids Surf 42, 191-204 doi:10.1016/0166-6622(89)80086-1

Dickinson E, Rolfe SE, Dalgleish DG. 1990. Surface shear viscometry as a probe of protein-protein interactions in mixed milk protein films adsorbed at the oil water interface. Int. J. Biol. Macromol. 12, 189-194. doi:10.1016/0141-8130(90)90031-5

Dickinson E, Hunt JA, Horne DS. 1992. Calcium induced flocculation of emulsions containing adsorbed β-casein or phosvitin. Food Hydrocoll. 6, 359–370. doi:10.1016/S0268-005X(09)80003-9

Dickinson E. 1994. Progress and Trends in Rheology, IV, Gallegos C. (ed) Steinkopff, Darmstadt.

Dickinson E, Casanova H. 1999. A thermoreversible emulsion gel based on sodium caseinate. Food Hydrocoll. 11, 285-289. doi:10.1016/S0268-005X(99)00010-7

Elizalde BE, Bartholomai GB, Pilosof AMR. 1996. The effect of Ph on the relationship between hydrophilic/lipophilic characteristics and emulsification properties of soy protein. Lebensmittel-Wissenchaft und Technol. 29, 334-339. doi:10.1006/fstl.1996.0050

Ferry JD.1980. Viscoelastic Properties of Polymer. Jhon Wiley and Sons, Nueva York

Franco JM, Raymundo A, Sousa I, Gallegos C. 1998. Influence of processing variables on the rheological and textural properties of lupin protein-stabilized emulsions. J. Agric. Food Chem. 46, 3109-3115. doi:10.1021/jf980284v

Franco JM, Partal P, Ruiz-Márquez D, Conde B, Gallegos C. 2000. Influence of Ph and Protein Thermal Treatment on the Rheology of Pea Protein-Stabilized Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 77, 975-983. doi:10.1007/s11746-000-0154-x

García-Sifuentes C, Pacheco-Aguilar R, Lugo-Sánchez M, García-Sánchez G, Ramírez-Suárez JC, García-Carreño F. 2009. Properties of recovered solids from stick-water treated by centrifugation and pH shift. Food Chem. 114, 197–203. doi:10.1016/j.foodchem.2008.09.064

Gallegos C, Franco JM. 1999a. Advances in the Flor and Rheology of Non-newtonian Fluids, VIII-A, Siginier, DA, de Kee D, Chhabra RP. (ed), Elsevier Science B.V. Amsterdam.

Guerrero A, Partal P, Gallegos C. 1998. Linear viscoelastic propertiers of sucrose ster-estabilized oil-in-water emulsions. J. Rheol. 42, 1375-1388. doi:10.1122/1.550965

Hultin HO, Kelleher SD. 2000. University of Massachusetts. US Patent No 6,138.959 .

Hultin HO, Kelleher SD. 2001. Advanced Protein Technology, Inc: US Patent No 6,288.216.

Lefebvre J, Renard D, Sánchez-Gimeno AC. 1998. Structure and rheology of heat-set gels of globular proteins I. Bovine serum albumin gels in isoelectric conditions. Rheol. Acta 37, 345-357 doi:10.1007/s003970050121

Macosko CW. 1994. Rheology: Principles, Measurements and Applications. VCH Publishers. Nueva York.

Madeka H, Kokini IL.1992. Effect of addition of zein and gliadin on the rheological properties of amylopectin starch with low-to-intermediate moisture, Cereal Chem. 69, 489–494.

Martinez I, Riscardo MA, Franco JM. 2007. Effect of salt content on the rheological properties of salad dressing- type emulsions stabilized by emulsifier blends. J. Food Eng. 80 (4), 1272-1281. doi:10.1016/j.jfoodeng.2006.09.022

McClements DJ. 2004. Food Emulsions. Principles Practices and Techniques. CRC. Press Boca Ratón (US) 2ª Edición.

Meakin P. 1983 Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys. Rev. Lett. 51, 1119-1122. doi:10.1103/PhysRevLett.51.1119

Mine Y, Keeratiurai M. 2000. Selective displacement of caseinate proteins by hen’s egg yolk lipoproteins at oil-in-water interfaces. Colloid Surface B: Biointerfaces 18, 1-11. doi:10.1016/S0927-7765(99)00126-5

Partal, P, Guerrero A, Berjano M, Muñoz J, Gallegos C. 1994. Flow behavior and stability of oil-in-water emulsions stabilized by a sucrose palmitate. J. Texture Stud. 25, 331-348. doi:10.1111/j.1745-4603.1994.tb00764.x

Partal P, Guerrero A, Berjano M, Gallegos C. 1999b. Transient flor of O/W sucrose palmitate emulsions. J. Food Eng. 41 (1), 33-41. doi:10.1016/S0260-8774(99)00071-0

Puppo M.C, Speroni F, Chapleau N, de Lamballerie M, Añón MC, Anton M. 2005. Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hidrocoll. 19, 289-296. doi:10.1016/j.foodhyd.2004.07.001

Rao MA. 1992. Viscoelastic Propetiers of Foods. Steffe J.F. (eds), Elsevier Applied Science, Londres.

Raymundo A, Franco JM, Gallegos C, Empis J, Sousa I. 1998. Effect of Thermal Denaturation of Lupin Protein on Its Emulsifying Properties. Nahrung-Food 42, 220-224. doi:10.1002/(SICI)1521-3803(199808)42:03/04<220::AID-FOOD220>3.0.CO;2-Q

Riscardo MA, Franco JM, Gallegos C. 2003. Influence of composition of emulsifier blends on the rheological properties of salad dressing-type emulsions. Food Sci. Technol. Int. 9 (1), 53-63. doi:10.1177/1082013203009001008

Riscardo MA, Moros JE, Franco JM, 2005. Rheological characterisation of salad-dressing-type emulsions stabilised by egg yolk/sucrose distearate blends. European Food Research and Technol. 220 (3,4), 380-388.

Romero A, Cordobés F, Puppo MC, Guerrero A, Bengochea C. 2008. Linear viscoelasticity and microstructure of heat-induced crayfish protein isolate gels. Food Hydrocoll. 23, 1033-1043. doi:10.1016/j.foodhyd.2007.05.019

Shahidi F. (Ed.). 2007. Maximising the value of marine by-products: An overview. Boca Ratón, FL, USA: CRC Press LLC.

Sathivel S, Bechtel PJ, Babbitt J, Smiley S, Crapo, Reppond K D, Prinyawiwatkul W. 2003. Biochemical and Functional Properties of Herring (Clupea harengus) Byproduct Hydrolysates. J. Food Sci. 68 (7), 2196–2200.

Sathivel S, Bechtel PJ. 2006. Properties of soluble protein powders from Alaska pollock (Theragra chalcogramma). Int. J. Food Sci. Technol. 41(5), 520–529. doi:10.1111/j.1365-2621.2005.01101.x PMid :20548306

Söderman O, Johansson I. 2000. Current Opinion in Colloid & Interfasce Sci. 4, 391. doi:10.1016/S1359-0294(00)00019-4

Weitz D Oliveira M. 1984. Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids. Phys. Rev. Lett. 52, 1433-1436. doi:10.1103/PhysRevLett.52.1433




Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es