Grasas y Aceites, Vol 62, No 3 (2011)

Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications


https://doi.org/10.3989/gya.113410

R. Sánchez
Departamento de Ingeniería Química. Facultad de Ciencias Experimentales. Campus de “El Carmen”. Universidad de Huelva, Spain

J. M. Franco
Departamento de Ingeniería Química. Facultad de Ciencias Experimentales. Campus de “El Carmen”. Universidad de Huelva, Spain

M. A. Delgado
Departamento de Ingeniería Química. Facultad de Ciencias Experimentales. Campus de “El Carmen”. Universidad de Huelva, Spain

C. Valencia
Departamento de Ingeniería Química. Facultad de Ciencias Experimentales. Campus de “El Carmen”. Universidad de Huelva, Spain

C. Gallegos
Departamento de Ingeniería Química. Facultad de Ciencias Experimentales. Campus de “El Carmen”. Universidad de Huelva, Spain

Abstract


Oleogels based on sorbitan and glyceryl monostearates and different types of vegetable oils, potentially applicable as biodegradable alternatives to traditional lubricating greases, have been studied. In particular, the rheological behavior, by means of small-amplitude oscillatory shear (SAOS) measurements, and some lubrication performance-related properties (mechanical stability and tribological response) have been evaluated in this work. SAOS response and mechanical stability of these oleogels are significantly influenced by the type and concentration of the organogelator and the vegetable oil used in the formulations. Glyceryl monostearate (GMS) generally produces stronger gels than sorbitan monostearate (SMS). The use of low-viscosity oils, such as rapeseed and soybean oils, yields gels with significantly higher values of the linear viscoelastic functions than oleogels prepared with high-viscosity oils, i.e. castor oil. The rheological behavior of SMS-based oleogels also depends on the cooling rate applied during the gelification process. On the other hand, the oleogels studied present low values of the friction coefficient obtained in a tribological contact, although only some GMS/castor oil-based oleogels exhibit a suitable mechanical stability.

Keywords


Bio-lubricants; Oleogels; Rheology; Vegetable oils

Full Text:


PDF

References


Adhvaryu A, Erhan SZ. 2002. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crops Prod. 15, 247-254. doi:10.1016/S0926-6690(01)00120-0

Adhvaryu A, Erhan SZ, Perez JM. 2004. Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants. Wear 257, 359-367. doi:10.1016/j.wear.2004.01.005

Almeida IF, Bahia MF. 2005. Comparison of the mechanical properties of two oleogels. e-rheo.pt 5, 12-18.

Almeida IF, Bahia MF. 2006. Evaluation of the physical stability of two oleogels. Int. J. Pharm. 327, 73-77. doi:10.1016/j.ijpharm.2006.07.036 PMid:16996708

Delgado MA, Sánchez MC, Valencia C, Franco JM, Gallegos C. 2005. Relationship among microstructure, rheology and processing of a lithium lubricating grease. Chem. Eng. Res. Des. 83, 1085-1092. doi:10.1205/cherd.04311

Delgado MA, Valencia C, Sánchez MC, Franco JM, Gallegos C. 2006a. Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Ind. Eng. Chem. Res. 45, 1902-1910. doi:10.1021/ie050826f

Delgado MA, Valencia C, Sánchez MC, Franco JM, Gallegos C. 2006b. Thermorheological behaviour of a lithium lubricating grease. Tribol. Lett. 23, 47-54. doi:10.1007/s11249-006-9109-5

Erhan SZ, Asadauskas S. 2000. Lubricant basestocks from vegetable oils. Ind. Crops Prod. 11, 277-282. doi:10.1016/S0926-6690(99)00061-8

Erhan SZ, Sharma BK, Perez JM. 2006. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 24, 292-299. doi:10.1016/j.indcrop.2006.06.008

Ferry JD. 1980. Viscoelastic properties of polymers. John Wiley and Sons, New York.

Franco JM, Guerrero A, Gallegos C. Influencia de las concentraciones de aceite y emulsionante en las propiedades reológicas de emulsiones aceite en agua del tipo salsa fina. 1995. Grasas y Aceites 46, 108-114. doi:10.3989/gya.1995.v46.i2.912

Franco JM, Delgado MA, Valencia C, Sánchez MC, Gallegos C. 2005. Mixing rheometry for studying the manufacture of lubricating greases. Chem. Eng. Sci. 60, 2409-2418. doi:10.1016/j.ces.2004.10.042

Gallegos C, Franco JM, Partal P. 2004. Rheology of food dispersions, in Binding DM, Walters K (Ed.) Rheology Reviews 2004, The British Society of Rheology, Aberystwyth, pp 19-65.

García-Zapateiro LA, Delgado, MA, Franco JM, Valencia C, Ruiz-Méndez MV, Garcés R, Gallegos C. 2010. Oleins as a source of estolides for biolubricant applications, Grasas y Aceites, 61, 171-174. doi:10.3989/gya.075209

Heng PWS, Chan LW, Chow KT. 2005. Development of novel nonaqueous ethylcellulose gel matrices: rheological and mechanical characterization. Pharm. Res. 22, 676-684. doi:10.1007/s11095-005-2484-z PMid:15846476

Hinze WL, Uemasu I, Dai F, Braun JM. 1996. Analytical and related applications of organogels. Curr. Opinion Colloid & Interface Sci. 1, 502-513. doi:10.1016/S1359-0294(96)80119-1

Lizaso E, Muños ME, Santamaría A. 1999. Formation of gels ethylcellulose solutions. An interpretation from dynamic viscoelastic results. Macromolecules 32, 1883-1889. doi:10.1021/ma9812231

Martín-Alfonso JE, Valencia C, Sánchez MC, Franco JM, Gallegos C. 2007. Development of new lubricating grease formulations using recycled LDPE as rheology modifier additive. Eur. Polym. J. 43, 139-149. doi:10.1016/j.eurpolymj.2006.09.020

Martín-Alfonso JE, Valencia C, Sánchez MC, Franco JM, Gallegos C. 2009. Rheological modification of lubricating greases with recycled polymers from different plastics waste. Ind. Eng. Chem. Res. 48, 4136-4144. doi:10.1021/ie801359g

Mewis J, Spaull AJB. 1976. Rheology of concentrated dispersions. Adv. Colloid Interface Sci. 6, 173-200. doi:10.1016/0001-8686(76)80008-5

NLGI. 1994. Lubricating Grease Guide. National Lubricating Grease Institute, Kansas.

Nunes MC, Raymundo A, Sousa I. 2006. Rheological behaviour and microstructure of pea protein/k-carrageenan/ starch gels with different setting conditions. Food Hydrocolloids 20, 106-113. doi:10.1016/j.foodhyd.2005.03.011

Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C. 2009. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations. Environ. Sci. Technol., 43, 2060-2065. doi:10.1021/es803047m

Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C. 2010. Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind Crops Prod. 32, 607-612. doi:10.1016/j.indcrop.2010.07.011

Ruiz-Márquez D, Partal P, Franco JM, Gallegos C. 2010. Emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún. Grasas y Aceites 61, 352-360.

Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2008. Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chem. Eng. Res. Des. 86, 1073-1082. doi:10.1016/j.cherd.2008.05.002

Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2011. Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: influence of ethyl cellulose molecular weight. Carbohydr. Polym. 83, 151-158. doi:10.1016/j.carbpol.2010.07.033

Wilson B. 1998. Lubricants and functional fluids from renewable sources. Ind. Lubr. Tribol. 50, 6-15. doi:10.1108/00368799810781274

Zhong Q, Dauber CR, Velev OD. 2004. Cooling effects on a model rennet casein gel system: part II. Permeability and microscopy. Langmuir 20, 7406-7411. doi:10.1021/la036148o PMid:15323483




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es