Efecto de la salinidad en la producción y calidad del aceite de semilla de Moringa oleifera

Autores/as

  • Farooq Anwar Department of Chemistry, University of Agriculture, Faisalabad
  • Abdullah Ijaz Hussain Department of Chemistry, University of Agriculture, Faisalabad
  • Muhammad Ashraf Department of Botany, University of Agriculture, Faisalabad
  • Amer Jamail Department of Chemistry, University of Agriculture, Faisalabad
  • Shahid Iqbal Department of Chemistry, University of Sargodha

DOI:

https://doi.org/10.3989/gya.2006.v57.i4.65

Palabras clave:

Calidad de aceite, Caracterización, Composición de ácidos grasos, Moringa oleifera, Salinidad, Tocoferoles

Resumen


Ha sido examinada la variación en la producción y composición del aceite de semilla de Moringa oleifera extraído a partir de semillas cultivadas en Pakistan con diferente concentración salina en el cultivo. La producción obtenida por extracción con hexano fue de 33.50% y 32.79% respectivamente para las semillas cultivadas en áreas con alto y bajo contenido salino. El análisis de la varianza (ANOVA) reveló la inexistencia de diferencias significativas entre las características físicas (índice de refracción a 40 °C, color y gravedad específica) y las químicas (índice de yodo, acidez libre, índice de peróxidos, materia insaponificable, índice de saponificación, valores de dienos y trienos conjugados e índice de p-anisidina) de los aceites procedentes de ambas áreas. En el área de mayor salinidad las concentraciones de C18:1 y C16:0 de los aceites de semilla de Moringa oleifera fueron significativamente mayores (P< 0.001), mientras que el de C14:0 fue significativamente menor. El análisis de tocoferoles demostró que las concentraciones de α- y δ-tocoferol eran superiores significativamente (P< 0.001) en los aceites procedentes de las áreas con alta salinidad, mientras que el contenido en γ-tocoferol fue superior significativamente (P< 0.001) en los procedentes del área de baja salinidad. Los resultados de este estudio muestran que la salinidad no afecta sobre el contenido en aceite de estas semillas. Sin embargo, puede afectar al contenido en tocoferoles y el perfil de ácidos grasos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdulkarim SM, Long K, Lai OM, Muhammad SKS, Ghazali HM. 2005. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem. 93, 253-263. doi:10.1016/j.foodchem.2004.09.023

American Oil Chemist Society (AOCS). 1997. Official and Recommended Practices of the American Oil Chemists Society, 5th Ed., AOCS Press, Champaign.

Anwar F, Ashraf M, Bhanger MI. 2005. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc. 82(1), 45-51. doi:10.1007/s11746-005-1041-1

Anwar F, Bhanger MI. 2003. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 51, 6558-6563. doi:10.1021/jf0209894

Baldini M, Giovanardi R, Tahmasebi-Enferadi S, Vannozzi GP. 2002. Effects of water regime on fatty acid accumulation and final fatty acid composition in the oil of standard and high oleic sunflower hybrids. Ital. J. Agron. 6(2), 119-126.

Bassil ES, Kaffka SR. 2002. Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. crop response to salinity. Agric.Water Manage. 54, 81-92. doi:10.1016/S0378-3774(01)00144-5

Erdei L, Stuiver GEC, Kupier PJC. 1980. The effect of salinity on lipid composition and on activity of Ca2+ and Mg2+ simulated ATPase in salt-sensitive and salttolerant Plantago Species. Physiol. Plant. 49, 315-319. doi:10.1111/j.1399-3054.1980.tb02670.x

Federation of Oils Seeds and Fats Association International (FOSFA International). 1982. Manual of the Federation of Oils Seeds and Fats Association, 277 (FOFSA) International. London.

Flagella Z, Cantore V, Giuliani MM, Tarantio E, De Caro A. 2002a. Crop salt tolerance physiological, yield and quality aspects. Rec. Res. Dev. Plant Biol. 2, 155-186.

Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A. 2004. Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur. J. Agron. 21, 267-272. doi:10.1016/j.eja.2003.09.001

Flagella Z, Rotunno T, Tarantino E, Di Caterina R, De Caro A. 2002b. Changes in seed yield and oil fatty composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and water regime. Eur. J. Agron. 17, 221-230. doi:10.1016/S1161-0301(02)00012-6

Francois LE, Kleiman R. 1990. Salinity effects on vegetative growth, seed yield, and fatty acid composition of crambe. Agron. J. 82, 1110–1114.

Heuer B, Nadler A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Sci. 137(1), 43-51. doi:10.1016/S0168-9452(98)00133-2

Heuer B, Ravina I, Davidov S. 2005. Seed yield, oil content, and fatty acid composition of stock (Matthiola incana) under saline irrigation. Aust. J. Agric. Res. 56, 45-47. doi:10.1071/AR04162

Heuer B, Yaniv Z, Ravina I. 2002. Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind. Crop Prod. 15, 163-167. doi:10.1016/S0926-6690(01)00107-8

Heuer B. 1994. Osmoregulatory role of proline in water and salt stressed plants. In Pessarakli M. (Ed.) Handbook of Plant and Crop Stress 363-381. Marcel Dekker Inc, New York.

International Organization for Standardization (ISO). 1977. Oilseed Residues-Determination of Total Ash, ISO, Geneva, Standard No. 749.

International Organization for Standardization (ISO). 1981. Animal Feeding Stuffs-Determination of Nitrogen and Calculation of Crude Protein Content, ISO, Geneva, Standard No. 5983.

International Union of Pure and Applied Chemistry (IUPAC). 1987. Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th rev. enlarged Ed., edited by C. Paquot and A. Hautfenne, Blackwell Scientific, London.

Jin Woong C, Choongsoo K. 1998. Effect of NaCl concentration on photosynthesis and mineral content of barley seedlings under solution culture. Korean J. Crop Sci. 43(3), 152-156.

Khan AH. 1998. Irrigation system performance assessment by decision support system and the role of a modern information transmission system in its operation. M. Phil Thesis, Report No.S44. International Water Management Institute. Lahore, Pakistan.

Lee BL, New AL, Ong CN. 2003. Simultaneous determination of tocotrienols, tocopherol, retinol and major carotenoids in human plasma. Clin. Chem. 49, 2056-2066. doi:10.1373/clinchem.2003.022681

McGinely L. 1991. Analysis and quality control for processing and processed fats, in Rossell JB, Pritchard JLR, (Eds.), Analysis of Oilseeds, Fats and Fatty Foods, 460–470, Elsevier Applied Science, New York.

Munns R, Cramer GR, Ball. 1999. Interactions between rising CO2, soil salinity and plant growth. in Luo Y and Mooney HA.(Eds.), Carbon dioxide and environmental stress, 139-167, Academic Press, London.

Parti RS, Deep V, Gupta SK. 2003. Effect of salinity on lipid components of mustard seeds. Plant Food Human Nutr. 58, 1-10. doi:10.1023/A:1024063105507

Rossell JB. 1991. Vegetable oils and fats, in Rossell JB, Pritchard JLR, (Eds.), Analysis of Oilseeds, Fats and Fatty Foods, 261-319, Elsevier Applied Science, New York.

Royo A, Gracia MS, Aragues R. 2005. Effect of soil salinity on the quality of Arbequina olive oil. Grasas Y Aceites 56(1), 25-33.

Smaoui A, Cherift A. 2000. Changes in molecular species of triacylglycerols in developing cottonseeds under salt stress. Biochem. Soc. Trans. 28, 902-905. doi:10.1042/BST0280902

Somali MA, Bajnedi MA, Al-Fhaimani SS. 1984. Chemical composition and characteristics of Moringa peregrine seeds and seed oil. J. Am. Oil Chem. Soc. 61, 85–86. doi:10.1007/BF02672051

Taneja R. 1988. Effect of cytokinin on growth, yield and metabolism of wheat (Triticum aestivum L.) grown under saline conditions. M.Sc. Thesis, Haryana Agricultural University, Hisar, India.

Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527. doi:10.1093/aob/mcg058

Tsaknis J, Lalas S, Gergis V, Dourtoglou V, Spilitois V. 1999. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J. Agric. Food Chem. 47, 4495–4499. doi:10.1021/jf9904214

Tsaknis J. 1998. Characterization of Moringa peregrine Arabian Seed Oil, Grasas Aceites (Sevilla) 49, 170–176.

Van de Graaff R, Patteson RA. 2001. Explaining the Mysteries of Salinity, Sodicity, SAR and ESP in Patterson R.A. and Jones M.J. (Eds). On-site Practice in Proceedings of On-site 01 Conference: Advancing On-site Wastewater System, 361-368. Published by Laboratories, Armidale.

Yoon SH, Kim SK, Shin MG, Kim KH. 1985. Comparative study of physical methods for lipid oxidation measurement. J. Am. Oil Chem. Soc. 68, 1487–1489. doi:10.1007/BF02541899

Descargas

Publicado

2006-12-31

Cómo citar

1.
Anwar F, Ijaz Hussain A, Ashraf M, Jamail A, Iqbal S. Efecto de la salinidad en la producción y calidad del aceite de semilla de Moringa oleifera. Grasas aceites [Internet]. 31 de diciembre de 2006 [citado 18 de mayo de 2024];57(4):394-401. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/65

Número

Sección

Investigación

Artículos más leídos del mismo autor/a

1 2 > >>