Conversión de Oleum papaveris seminis en ésteres metílicos mediante un proceso de esterificación: Optimización y estudio cinético

Autores/as

  • A. M. Syam Institute of Advanced Technology, Universiti Putra Malaysia - Department of Chemical Engineering, University of Malikussaleh
  • U. Rashid Institute of Advanced Technology, Universiti Putra Malaysia - Chemistry Department, College of Science, King Saud University
  • R. Yunus Institute of Advanced Technology, Universiti Putra Malaysia - Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia
  • H. A. Hamid Institute of Advanced Technology, Universiti Putra Malaysia
  • S. I. Al-Resayes Chemistry Department, College of Science, King Saud University
  • I. A. Nehdi Chemistry Department, College of Science, King Saud University
  • A. H. Al-Muhtaseb Petroleum and Chemical Engineering Department, Faculty of Engineering, Sultan Qaboos University

DOI:

https://doi.org/10.3989/gya.0496151

Palabras clave:

Amberlite 120, Cinética, Esterificación, Metodología de superficie respuesta, Oleum papaveris seminis

Resumen


En este artículo se presenta un proceso de pre-tratamiento con ácido, y un estudio cinético de la reacción de esterificación. Se utiliza Oleum papaveris seminis con metanol en presencia de Amberlite 120 como catalizador sólido para la formación de los ésteres metílicos. Se aplicó una metodología de superficie de respuesta (RSM) para optimizar los parámetros de la reacción; es decir, tiempo de reacción, porcentaje de la relación de catalizador y volumen de metanol - aceite. Los resultados mostraron que el 0,87% w/w de la concentración de catalizador y 44,70% v/v de metanol en relación al aceite dan lugar a un contenido final de ácidos grasos libres (FFA) de 0,60% w/w en 102,40 min de tiempo de reacción. Se demostró que la contribución de Amberlite 120 en la esterificación de los FFA fue altamente significativa. La cinética de la esterificación del Oleum papaveris Seminis con metanol en presencia del catalizador Amberlite 120 también se investigó para establecer la constante de velocidad de reacción (k), orden de la reacción, y la energía de activación. El estudio se realizó bajo los parámetros optimizados a tres temperaturas de reacción (50, 55, y 60 °C). El valor de la constante k fué del rango de 0.013 a 0,027 min-1. El modelo de cinética de primer orden fue el adecuado para esta esterificación FFA irreversible con una energía de activación de aproximadamente 60,9 KJ mol -1.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah AZ, Razali N, Lee KT. 2009. Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Proc. Technol. 90, 958–964. http://dx.doi.org/10.1016/j.fuproc.2009.03.023

Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO. 2014. A review of current technology for biodiesel production: State of the art. Biomass Bioenerg. 61, 276–297. http://dx.doi.org/10.1016/j.biombioe.2013.11.014

Azhari, Faiz M, Yunus R, Ghazi TIM, Yaw TCS. 2008. Reduction of free fatty acids in crude Jatropha curcas oil via an esterification process. Int. J. Eng. Technol. 5, 92–98.

Berrios M, Siles J, Mart.n MA, Mart.n A. 2007. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel, 86, 2383–2388. http://dx.doi.org/10.1016/j.fuel.2007.02.002

Chan KW, Tsai YT, Lin HM, Lee MJ. 2010. Esterification of adipic acid with methanol over Amberlyst 35. J. Taiwan Inst. Chem. Eng. 41, 414–420. http://dx.doi.org/10.1016/j.jtice.2009.12.001

Ghadge SV, Raheman H. 2005. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenerg. 28, 601–605. http://dx.doi.org/10.1016/j.biombioe.2004.11.009

Halim SFA, Kamaruddin AH, Fernando WJN. 2009. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies. Bioresource Technol. 100, 710–716. http://dx.doi.org/10.1016/j.biortech.2008.07.031 PMid:18819793

Jeong GT, Yang HS, Park DH. 2009. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource Technol. 100, 25–30. http://dx.doi.org/10.1016/j.biortech.2008.05.011 PMid:18572401

Jeong GT, Kim DH, Park DH. 2007. Response surface methodological approach for optimization of free fatty acid removal in feedstock. In: Mielenz J, Klasson KT, Adney W, McMillan J (Eds.) Applied Biochemistry and Biotecnology, Humana Press, pp. 583–593. http://dx.doi.org/10.1007/978-1-60327-181-3_48 PMid:18478418

Kulkarni MG, Dalai AK. 2006. Waste cooking oil an economical source for biodiesel: A review. Ind. Eng. Chem. Res. 45, 2901–2913. http://dx.doi.org/10.1021/ie0510526

Lin S, Sue TT, Ai TY. 1995. PORIM test methods, in, Palm Oil Research Institute of Malaysia, Kuala Lumpur.

Lee KT, Matlina Mohtar A, Zainudin NF, Bhatia S, Mohamed AR. 2005. Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash. Fuel, 84, 143–151. http://dx.doi.org/10.1016/j.fuel.2004.08.018

Ma F, Hanna MA. 1999. Biodiesel production: a review. Bioresource Technol. 70, 1–15. http://dx.doi.org/10.1016/S0960-8524(99)00025-5

Mason RL, Gunst RF, Hess JL. 1989. Statistics design and analysis of experiments: with applications to engineering and science, Wiley, New York.

Mohr SH, Wang J, Ellem G, Ward J, Giurco D. 2015. Projection of world fossil fuels by country. Fuel, 141, 120–135. http://dx.doi.org/10.1016/j.fuel.2014.10.030

Myers RH, Montgomery DC. 2002. Response surface methodology: Process and process optimization using designed experiments, Wiley, New York.

Osorio-Viana W, Duque-Bernal M, Fontalvo J, Dobrosz-Gómez I, Gómez García M. 2013. Kinetic study on the catalytic esterification of acetic acid with isoamyl alcohol over Amberlite IR-120. Chem. Eng. Sci. 101, 755–763. http://dx.doi.org/10.1016/j.ces.2013.07.009

Park JY, Kim DK, Lee JS. 2010. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresource Technol. 101, S62–S65. http://dx.doi.org/10.1016/j.biortech.2009.03.035 PMid:19362818

Peters TA, Benes NE, Holmen A, Keurentjes JTF. 2006. Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol. Appl. Catal. A. Gen. 297, 182–188. http://dx.doi.org/10.1016/j.apcata.2005.09.006

Pinzi S, Lopez-Gimenez FJ, Ruiz JJ, Dorado MP. 2010. Response surface modeling to predict biodiesel yield in a multi-feed stock biodiesel production plant. Bioresource Technol. 101, 9587–9593. http://dx.doi.org/10.1016/j.biortech.2010.07.076 PMid:20699196

Radjiyev A, Qiu H, Xiong S, Nam K. 2015. Ergonomics and sustainable development in the past two decades (1992–2011): Research trends and how ergonomics can contribute to sustainable development. Appl. Ergono. 46, 67–75. http://dx.doi.org/10.1016/j.apergo.2014.07.006 PMid:25085643

Ramadhas AS, Jayaraj S, Muraleedharan, C. 2005. Biodiesel production from high FFA rubber seed oil. Fuel, 84, 335–340. http://dx.doi.org/10.1016/j.fuel.2004.09.016

Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S. 2011. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energ. Conver. Manag. 52, 3034–3042. http://dx.doi.org/10.1016/j.enconman.2011.04.018

Silva GF, Camargo FL, Ferreira ALO. 2011. Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Proc. Technol. 92, 407–413. http://dx.doi.org/10.1016/j.fuproc.2010.10.002

Su CH. 2013. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid. Bioresource Technol. 130, 522–528. http://dx.doi.org/10.1016/j.biortech.2012.12.090 PMid:23334006

Tesser R, Di Serio M, Casale L, Sannino L, Ledda M, Santacesaria E. 2010. Acid exchange resins deactivation in the esterification of free fatty acids. Chem. Eng. J. 161, 212–222. http://dx.doi.org/10.1016/j.cej.2010.04.026

Utama NA, Fathoni AM, Kristianto MA, McLellan BC. 2014. The end of fossil fuel era: Supply-demand measures through energy efficiency. Proc. Environ. Sci. 20, 40–45. http://dx.doi.org/10.1016/j.proenv.2014.03.007

Vicente G, Martínez M, Aracil J. 2007. Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource Technol. 98, 1724–1733. http://dx.doi.org/10.1016/j.biortech.2006.07.024 PMid:16934452

Wu J, Gao Y, Zhang W, Tan Y, Tang A, Men Y, Tang B. 2014. Esterification of cooking oil for biodiesel production using composites Cs2.5H0.5PW12O40/ionic liquids catalysts. Appl. Petrochem. Res. 4, 305–312. http://dx.doi.org/10.1007/s13203-014-0066-x

Publicado

2016-03-31

Cómo citar

1.
Syam AM, Rashid U, Yunus R, Hamid HA, Al-Resayes SI, Nehdi IA, Al-Muhtaseb AH. Conversión de Oleum papaveris seminis en ésteres metílicos mediante un proceso de esterificación: Optimización y estudio cinético. Grasas aceites [Internet]. 31 de marzo de 2016 [citado 1 de mayo de 2025];67(1):e115. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1581

Número

Sección

Investigación