Predicción de la frescura del aceite de oliva virgen extra durante el almacenamiento mediante espectroscopía de fluorescencia

Autores/as

DOI:

https://doi.org/10.3989/gya.0332171

Palabras clave:

Aceite de oliva virgen, Espectrofluorimetría, Frescura, Pigmentos, Pirofeofitina

Resumen


La calidad del aceite de oliva virgen está relacionada con su flavor y sus beneficios únicos para la salud. Algunas de estas propiedades se encuentran en el nivel más deseable cuando el aceite está recién extraído, ya que no es un producto que mejore con el tiempo. Por el contrario, las concentraciones de muchos compuestos cambian a lo largo de la vida útil. Estos cambios revelan el envejecimiento del aceite, pero no implican necesariamente la alteración de las propiedades sensoriales, por lo que en algunos casos un aceite envejecido procedente de aceitunas sanas puede presentar mejor calidad que uno fresco procedente de aceitunas afectadas por procesos de fermentación. El objetivo de este trabajo es estudiar diferentes metodologías propuestas para evaluar la calidad del aceite de oliva virgen con implicaciones en la frescura y el envejecimiento del aceite, destacando las posibilidades de las rápidas técnicas espectrofluorométricas para evaluar la frescura del aceite verificando la evolución de los pigmentos durante el almacenamiento. El cambio observado en las características espectrales seleccionadas y su modelado matemático a lo largo del tiempo se comparó con el modelo aceptado para predecir la cantidad de pirofeofitina a, que se basa en estudios isocinéticos. Los dos modelos matemáticos descritos en este estudio pusieron de manifiesto la utilidad de los pigmentos en la predicción de la vida útil del aceite de oliva virgen extra. La mejor regresión se obtuvo para 655 nm (R2-ajustado = 0,91), longitud de onda que coincide con la banda distintiva de pigmentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aparicio R, Morales MT, García-González DL. 2012. Towards new analyses of aroma and volatiles to understand sensory perception of olive oil. Eur. J. Lipid Sci. Technol. 114, 1114–1125. https://doi.org/10.1002/ejlt.201200193

Aparicio R, Morales MT, Aparicio-Ruiz R, Tena N, García- González DL. 2013. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Res. Int. 54, 2025–2038. https://doi.org/10.1016/j.foodres.2013.07.039

Aparicio-Ruiz R, Aparicio R, García-González DL. 2014. Does "Best Before" date embody extra-virgin olive oil freshness? J. Agric. Food Chem. 62, 554–556. https://doi.org/10.1021/jf405220d PMid:24392818

Aparicio-Ruiz R, Mínguez-Mosquera MI, Gandul-Rojas B. 2010. Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. J. Agric. Food Chem. 58, 6200–6208. https://doi.org/10.1021/jf9043937 PMid:20426424

Aparicio-Ruiz R, Roca M, Gandul-Rojas B. 2012. Mathematical model to predict the formation of pyropheophytin a in virgin olive oil during storage. J. Agric. Food Chem. 60, 7040–7049. https://doi.org/10.1021/jf3010965 PMid:22708655

Australian Standards (AS) 2011. AS5264–2011:Olive Oils and Olive-pomace Oils. Committee FT-034.Sydney, Australia.

Ayton J, Mailer RJ, Graham K. 2012. The Effect of Storage Conditions on Extra Virgin Olive Oil Quality. Canberra (Australia): Rural Industries Research and Development Corporation (RIRDC) Publication, No. 12/024. https://1.oliveoiltimes.com/library/Olive-Oil-Storage- Conditions.pdf

California Department of Food and Agriculture (CDFA) 2016. Grade and Labeling Standards for Olive Oil, Refined-Olive Oil and Olive-Pomace Oil. Sacramento, 22 September 2016.

DeEll JR, Toivonen PMA. 1999. Chlorophyll fluorescence as an indicator of physiological changes in cold-stored broccoli after transfer to room temperature. J. Food Sci. 64, 501–503. https://doi.org/10.1111/j.1365-2621.1999.tb15071.x

Dupuy N, Le Dréau Y, Ollivier D, Artaud J, Pinatel C, Kister J. 2005. Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra. J. Agric. Food Chem. 53, 9361–9368. https://doi.org/10.1021/jf051716m

Galeano Díaz T, Durán Merás I, Correa CA, Roldán B, Rodríguez Cáceres MI. 2003. Simultaneous fluorometric determination of chlorophylls a and b and pheophytins a and b in olive oil by partial least squares calibration. J. Agric. Food Chem. 51, 6934–6940. https://doi.org/10.1021/jf034456m PMid:14611149

Gallardo Guerrero L, Roca M, Gandul-Rojas B, Mínguez Mosquera MI. 2005. Effect of storage on the original pigment profile of Spanish virgin olive oil. J. Am. Oil Chem. Soc. 82, 33–39. https://doi.org/10.1007/s11746-005-1039-8

Gertz C, Fiebig HJ. 2006. Pyropheophytin ? - Determination of thermal degradation products of chlorophyll a in virgin olive oil. Eur. J. Lipid Sci. Technol. 108, 1062–1065. https://doi.org/10.1002/ejlt.200600164

International Olive Council (IOC). 2015. Sensory analysis of olive oil. Method for the organoleptic assessment of virgin olive oil. COI/T.20/Doc. No 15/Rev. 8. Madrid: Spain.

International Olive Council (IOC). 2016. Trade standard applying to olive oils and olive-pomace oils. COI/T.15/ NC No. 3 Rev.11, July 2016, Madrid, Spain.

ISO. International Organization for Standardization. 2009. ISO 660:2009, Animal and vegetable fats and oils - Determination of acid value and acidity. Geneva, Switzerland.

ISO. International Organization for Standardization. 2007. ISO 3960:2007, Animal and vegetable fats and oils - Determination of peroxide value - Iodometric (visual) endpoint determination. Geneva, Switzerland.

ISO. International Organization for Standardization. 2011. ISO 3656:2011, Animal and vegetable fats and oils - Determination of ultraviolet absorbance expressed as specific UV extinction. Geneva, Switzerland.

Mínguez-Mosquera MI, Gandul-Rojas B, Garrido?Fernández J, Gallardo Guerrero, L. 1990. Pigment presence in virgin olive oil. J. Am. Oil Chem. Soc. 67, 192–196. https://doi.org/10.1007/BF02539624

Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo?Guerrero L. 1992. Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by HPLC. J. Agric. Food Chem. 40, 60–63. https://doi.org/10.1021/jf00013a012

Morales MT, Przybylski R. 2013. Olive Oil Oxidation, in Aparicio R, Harwood J (Eds.) Handbook of Olive Oil. Analysis and Properties, second ed., Springer, New York. 479–522. https://doi.org/10.1007/978-1-4614-7777-8_13

Roca M, Mínguez-Mosquera MI. 2001. Changes in chloroplast pigments of olive varieties during fruit ripening. J. Agric. Food Chem. 89, 832–839. https://doi.org/10.1021/jf001000l

South African National Standard (SANS) 2015. Olive Oils and Pomace Olive Oils. SANS1377:2015. (Government Gazette, 22 May, 2015, pag. 32 No. 38803). National Committee SABS. South Africa.

Sayago A, García-González DL, Morales MT, Aparicio R. 2007. Detection of the presence of refined hazelnut oil in refined olive oil by fluorescence spectroscopy. J. Agric. Food Chem. 55, 2068–2071. https://doi.org/10.1021/jf061875l PMid:17319679

Schwartz SJ, Woo SL, von Elbe JH. 1981. High performance liquid chromatography of chlorophylls and their derivatives in fresh and processed spinach. J. Agric. Food Chem. 29, 533–535. https://doi.org/10.1021/jf00105a025

Sievers G, Hynninem PH. 1977. Thinlayer chromatography of chlorophylls and their derivatives on cellulose layers. J. Chromatogr. A 134, 359–364. https://doi.org/10.1016/S0021-9673(00)88534-9

Sikorska E, Górecki T, Khmelinskii IV, Sokorski M, Koziol J. 2005. Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem. 89, 217–225. https://doi.org/10.1016/j.foodchem.2004.02.028

Tena N. 2010. Evolution of major and minor compounds in thermoxidized olive oils: Analyses by spectroscopic and chromatographic methodologies. Ph.D. Dissertation. University of Sevilla (Spain).

Tena N, Aparicio R, García-González DL. 2012. Chemical changes of thermoxidized virgin olive oil determined by excitation-emission fluorescence spectroscopy (EEFS). Food Res. Int. 45, 103–108. https://doi.org/10.1016/j.foodres.2011.10.015

Tena N, García-González DL, Aparicio R. 2009. Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J. Agric. Food Chem. 57, 10505–10511. https://doi.org/10.1021/jf902009b PMid:19919111

Zandomeneghi M, Carbonaro L, Caffarata C. 2005. Fluorescence of vegetable oils: olive oils. J. Agric. Food Chem. 53, 759–766. https://doi.org/10.1021/jf048742p PMid:15686431

Publicado

2017-12-30

Cómo citar

1.
Aparicio-Ruiz R, Tena N, Romero I, Aparicio R, García-González DL, Morales MT. Predicción de la frescura del aceite de oliva virgen extra durante el almacenamiento mediante espectroscopía de fluorescencia. Grasas aceites [Internet]. 30 de diciembre de 2017 [citado 14 de mayo de 2024];68(4):e219. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1686

Número

Sección

Investigación

Artículos más leídos del mismo autor/a

1 2 > >>