Efecto de reemplazar estearina por oleína de palma en galletas de papa horneadas

Autores/as

DOI:

https://doi.org/10.3989/gya.0441211

Palabras clave:

Estabilidad oxidativa, Estearina de palma roja, Micronutrientes, Oleina de palma roja, Patata

Resumen


Las galletas de papa fueron formuladas reemplazando estearina de palma roja (RPS) por oleina de palma roja (RPOL) al 0, 17 y 35%, y posteriormente horneadas a 160, 180 y 200°C durante 10, 12 y 15 min. El análisis sensorial utilizando una prueba ortogonal mostró que la relación RPS-RPOL 65:35, la temperatura de horneado 160 ºC, y el tiempo de horneado 12 min fueron las condiciones óptimas. Las galletas hechas de 65% RPS + 35% RPOL presentan 0,6 veces menos de escualeno, pero 1,5 veces más β-caroteno, tocoferoles y tocotrienoles que la mezcla de RPS y RPOL en 100:0. Por otra parte, las galletas con mayor estabilidad oxidativa se obtuvieron a menor temperatura (160 ºC) y menor tiempo de horneado (10 min). Este estudio demuestra que la mezcla RPOL y RPS puede mejorar positivamente las propiedades nutricionales y la estabilidad oxidativa de los alimentos horneados, y que el uso de papa en el procesamiento de hornear puede ser beneficioso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Saqer JM, Sidhu JS, Al-Hooti SN, Al-Amiri HA, Al-Othman A, Al-Haji L, Ahmed N, Mansour IB, Minal J. 2004. Developing functional foods using red palm olein. IV. Tocopherols and tocotrienols. Food Chem. 85 (4), 579-583. https://doi.org/10.1016/j.foodchem.2003.08.003

Birch PRJ, Bryan G, Fenton B, Gilroy EM., Hein I, Jones JT, Toth IK. 2012. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 4, 477-508. https://doi.org/10.1007/s12571-012-0220-1

El-Hadad N, Abou-Gharbia HA, Abd El-Aal MH, Youssef MM. 2010. Red palm olein: Characterization and utilization in formulating novel functional biscuits. J. Am. Oil Chem. Soc. 87, 295-304. https://doi.org/10.1007/s11746-009-1497-x

Hamid AA, Dek MSP, Tan CP. 2014. Changes of major antioxidant compounds and radical scavenging activity of palm oil and rice bran oil during deep-frying. Antioxidants 3 (3), 502-515. https://doi.org/10.3390/antiox3030502 PMid:26785067 PMCid:PMC4665415

Harianti R, Marliyati SA, Rimbawan, Sukandar D. 2018. Development of high antioxidant red palm oil cake as a potential functional food. J. Gizi Pangan. 13 (2), 63-70. https://doi.org/10.25182/jgp.2018.13.2.63-70

Kamaleldin A, Appelqvist LA. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31 (7), 671-701. https://doi.org/10.1007/BF02522884 PMid:8827691

Kong J, Perkins LB, Dougherty MP, Camire ME. 2011. Control of lipid oxidation in extruded salmon jerky snacks. J. Food Sci. 76 (1), C8-C13. https://doi.org/10.1111/j.1750-3841.2010.01896.x PMid:21535658

Kumar PKP, Krishna AGG. 2014. Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions. Grasas Aceites 65 (2), 26-41. https://doi.org/10.3989/gya.097413

Lee CY. 1986. Changes in carotenoid content of carrots during growth and post-harvest storage. Food Chem. 20, 285-293. https://doi.org/10.1016/0308-8146(86)90097-X

Marjan AQ, Marliyati A, Ekayanti I. 2016. Development of food product with red palm oil substitution as an alternative functional food high in beta carotene. J. Gizi Pangan. 11 (2), 91-98.

Mayamol PN, Balachandran C, Samuel T. 2007. Process technology for the production of micronutrient rich red palm olein. J. Am. Oil Chem. Soc. 84 (6), 587-596. https://doi.org/10.1007/s11746-007-1078-9

Mba OI, Dumont MJ, Ngadi M. 2015. Palm oil: Processing, characterization and utilization in the food industry-A review. Food Biosci. 10, 26-41. https://doi.org/10.1016/j.fbio.2015.01.003

Michotte D, Rogez H, Chirinos R, Mignolet E, Campos D, Larondelle Y. 2011. Linseed oil stabilisation with pure natural phenolic compounds. Food Chem. 129, 1228-1231. https://doi.org/10.1016/j.foodchem.2011.05.108 PMid:25212361

Nor AI, Miskandar MS. 2007. Utilization of palm oil and palm oil products in shortenings and margarine. Eur. J. Lipid Sci. Tech. 109, 422-432. https://doi.org/10.1002/ejlt.200600232

Oluwamukomi MO, Oluwalana IB, Akinbowale OF. 2010. Physicochemical and sensory properties of wheat-cassava composite biscuit enriched with soy flour. Afr. J. Food Sci. 5 (2), 50-56.

Pan KL, Ji M, Hu MM, OOI C. 2016. Analysis of nutritional components for red palm oil. Chinese cereals oils 29 (12), 79-81.

Radhika L, Kanthimathi MS, Ammu KR, Yuen-May C, Kim-Tiu T. 2017. Health-promoting effects of red palm oil: Evidence from animal and human studies. Nutr Rev. 75 (2), 98-113. https://doi.org/10.1093/nutrit/nuw054 PMid:28158744

Reddy LH, Couvreur P. 2009. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Delivery Rev. 61 (15), 1412-1426. https://doi.org/10.1016/j.addr.2009.09.005 PMid:19804806

Rossi M, Alamprese C, Ratti S. 2007. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 102 (3), 812-817. https://doi.org/10.1016/j.foodchem.2006.06.016

Sidhu JS, Al-Hooti SN, Al-Saqer JM., Al-Amiri HA., Al-Foudari M, Al-Othman A, Ahmad A, Al-Haji L, Ahmed N, Mansor IB, Minal J. 2004. Developing functional foods using red palm olein: Pilot-scale studies. Int. J. Food Prop. 7 (1), 1-13. https://doi.org/10.1081/JFP-120022491

Singh JKL. 2016. Potato Starch and Its Modification.Adv. Potato Chem. Technol. 195-247. https://doi.org/10.1016/B978-0-12-800002-1.00008-X PMCid:PMC4864672

Siti AK, Jinap S, Sukor R. 2018. Effect of fat-soluble anti-oxidants in vegetable oils on acrylamide concentrations during deep-fat frying of French fries. Malays J. Med. Sci. 25 (5), 128-139.

Sobhana R, Santosh JP, Som NS. 2019. Impact of crude palm oil fortified cookies supplementation on anthropometry, vitamin a and hematological status of school children in India. Int. J. Vitam. Nutr. Res. 89 (5-6), 1-10. https://doi.org/10.1024/0300-9831/a000478 PMid:30932787

Szulczewska-Remi A, Nogala-Kalucka M, Nowak KW. 2019. Study on the influence of palm oil on blood and liver biochemical parameters, beta-carotene and tocochromanols content as well as antioxidant activity in rats. J. Food Biochem. 43 (2), e12707. https://doi.org/10.1111/jfbc.12707 PMid:31353667

Yanishlieva NV, Aitzetmuller K, Raneva VG. 1998. Beta-carotene and lipid oxidation. Fett-lipid 100 (10), 444-462. https://doi.org/10.1002/(SICI)1521-4133(199810)100:10<444::AID-LIPI444>3.0.CO;2-A

Yui Y, Miyazaki S, Ma Y, Ohira M, Fiehn O, Ikegami T, McCalley DV, Tanaka N. 2016. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure. J. Chromatogr. A. 1450, 45-52. https://doi.org/10.1016/j.chroma.2016.04.076 PMid:27157422

Zhang H, Xu F, Wu Y, Hu HH, Dai XF. 2017. Progress of potato staple food research and industry development in China. J. Integr. Agric. 16 (12), 2924-2932. https://doi.org/10.1016/S2095-3119(17)61736-2

Publicado

2022-06-22

Cómo citar

1.
Xu J, Liu Y, Olajide T, Liu H, Weng X. Efecto de reemplazar estearina por oleína de palma en galletas de papa horneadas. Grasas aceites [Internet]. 22 de junio de 2022 [citado 27 de julio de 2024];73(2):e456. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1941

Número

Sección

Investigación

Datos de los fondos

Malaysian Palm Oil Board
Números de la subvención PORTSIM 054/2017