Propiedades antioxidantes de dos nuevos derivados lipofílicos del ácido gálico

Autores/as

DOI:

https://doi.org/10.3989/gya.0325211

Palabras clave:

Actividad antioxidante, Derivados del ácido gálico, Eliminación de radicales libres, Emulsión de aceite en agua, Lipofilia, Rancimat

Resumen


Se aporta información sobre de la eficacia de dos derivados lipofílicos de fenoles naturales derivados del ácido gálico (GA) y sintetizados utilizando galato de metilo como material de partida. Las actividades antioxidantes de estos nuevos compuestos fenólicos en comparación con el GA, terc-butilhidroquinona (TBHQ) y butil hidroxitolueno (BHT) se evaluaron en aceites, sistemas emulsionados y mediante DPPH. Los resultados mostraron que los nuevos compuestos retrasaron efectivamente la oxidación de lípidos mucho más fuerte que el GA y otros antioxidantes mediante Rancimat (100-140 °C) y pruebas de emulsión. En el aceite a 65 °C, se comportaron mejor que el GA, pero el TBHQ tuvo la actividad más alta. Por lo tanto, reemplazar el grupo carboxílico en GA al unir covalentemente fenoles impedidos estéricamente a su anillo de fenilo ayudó a aumentar su lipofilia y también dio como resultado efectos sinérgicos que mejoraron la actividad antioxidante general a través de la estabilización del radical fenoxi. Estas nuevas variantes de antioxidantes satisfacen la demanda industrial de ingredientes bioactivos con un fuerte potencial antioxidante en diferentes condiciones de procesamiento de alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AL Zahrani NA, El-Shishtawy RM, Asiri, AM. 2020. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem. 204, 112609. https://doi.org/10.1016/j.ejmech.2020.112609 PMid:32731188

Alavi Rafiee S, Farhoosh R, Sharif A. 2018. Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur. J. Lipid Sci. Technol. 120, 1-8. https://doi.org/10.1002/ejlt.201800319

AOCS. 1995. Official Methods and Recommended practices of the American Oil Chemists'Society (4th ed.). Champaign, IL (USA): AOCS Press.

AOCS. 2011. Official methods and recommended practices of the American Oil Chemists'Society. AOCS Method Cd8b-90. Champaign, IL. (USA): AOCS Press.

Asnaashari M, Farhoosh R, Sharif A. 2014. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem. 159, 439-444. https://doi.org/10.1016/j.foodchem.2014.03.038 PMid:24767079

Crauste C, Rosell M, Durand T, Vercauteren J. 2016. Omega-3 polyunsaturated lipophenols, how and why? Biochimie 120, 62-74. https://doi.org/10.1016/j.biochi.2015.07.018 PMid:26209925

Dodo K, Minato T, Noguchi-Yachide T, Suganuma M, Hashimoto Y. 2008. Antiproliferative and apoptosis-inducing activities of alkyl gallate and gallamide derivatives related to (-)-epigallocatechin gallate. Bioorg. Med. Chem. 16, 7975-7982. https://doi.org/10.1016/j.bmc.2008.07.063 PMid:18693020

Farhoosh R, Johnny S, Asnaashari M, Molaahmadibahraseman N, Sharif A. 2016. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 194, 128-134. https://doi.org/10.1016/j.foodchem.2015.08.003 PMid:26471535

Farhoosh R, Nyström L. 2018. Antioxidant potency of gallic acid, methyl gallate and their combinations in sunflower oil triacylglycerols at high temperature. Food Chem. 244, 29-35. https://doi.org/10.1016/j.foodchem.2017.10.025 PMid:29120784

Guitard R, Paul JF, Nardello-Rataj V, Aubry JM. 2016. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils. Food Chem. 213, 284-295. https://doi.org/10.1016/j.foodchem.2016.06.038 PMid:27451183

Guo Y, Guo Y, Xie Y, Cheng Y, Qian H, Yao W. 2017. Regeneration of tert-butylhydroquinone by tea polyphenols. Food Res. Int. 95, 1-8. https://doi.org/10.1016/j.foodres.2017.02.009 PMid:28395816

Hirose T, Takai H, Watabe M, Minamikawa H, Tachikawa T, Kodama K, Yasutake M. 2014. Effect of alkoxy terminal chain length on mesomorphism of 1,6-disubstituted pyrene-based hexacatenar liquid crystals: Columnar phase control. Tetrahedron 70, 5100-5108. https://doi.org/10.1016/j.tet.2014.05.111

Huang Y, Jiang Z, Liao X, Hou J, Weng X. 2014. Antioxidant activities of two novel synthetic methylbenzenediol derivatives. Czech J. Food Sci. 32, 348-353. https://doi.org/10.17221/283/2013-CJFS

Jiang ZW, Weng XC, Huang Y, Hou JP, Liao XY. 2014. Synthesis and antioxidant activity of two novel tetraphenolic compounds derived from toluhydroquinone and tertiary butylhydroquinone. Grasas Aceites 65 (2), e016. https://doi.org/10.3989/gya.086513

Jung MY, Choi DS. 2016. Protective effect of gallic acid on the thermal oxidation of corn and soybean oils during high temperature heating. Food Sci. Biotechnol. 25, 1577-1582. https://doi.org/10.1007/s10068-016-0243-z PMid:30263447 PMCid:PMC6049252

Kancheva VD, Boranova PV, Nechev JT, Manolov II. 2010. Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants. Biochimie 92, 1138-1146. https://doi.org/10.1016/j.biochi.2010.02.033 PMid:20211681

Li J, Wang T, Wu H, Ho C-T, Weng X. 2006. 1,1-Di-(2 ',5 '-dihydroxy-4 '-tert-butylphenyl)ethane: A novel antioxidant. J. Food Lipids 13, 331-340. https://doi.org/10.1111/j.1745-4522.2006.00056.x

Mansouri H, Farhoosh R, Rezaie M. 2020. Interfacial performance of gallic acid and methyl gallate accompanied by lecithin in inhibiting bulk phase oil peroxidation. Food Chem. 328, 127128. https://doi.org/10.1016/j.foodchem.2020.127128 PMid:32505058

Maszewska M, Florowska A, Dłuzewska E, Wroniak M, Marciniak-Lukasiak K, Zbikowska A. 2018. Oxidative stability of selected edible oils. Molecules 23, 15-17. https://doi.org/10.3390/molecules23071746 PMid:30018226 PMCid:PMC6100155

Olajide TM, Pasdar H, Weng XC. 2018. A novel antioxidant: 6,6'-(butane-1,1-diyl)bis(4-methylbenzene-1,2-diol). Grasas y Aceites 69, 1-7. https://doi.org/10.3989/gya.0344181

Olajide TM, Liu T, Liu H, Weng X. 2020. Antioxidant properties of two novel lipophilic derivatives of hydroxytyrosol. Food Chem. 315, 126197. https://doi.org/10.1016/j.foodchem.2020.126197 PMid:32018079

Panya A, Laguerre M, Lecomte J, Villeneuve P, Weiss J, McClements JD, Decker EA. 2010. Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. J. Agric. Food Chem. 585679-5684. https://doi.org/10.1021/jf100133b PMid:20302369

Saad B, Sing YY, Nawi MA, Hashim NH, Mohamed Ali AS, Saleh MI, Sulaiman SF, Talib KM, Ahmad K. 2007. Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem. 105, 389-394. https://doi.org/10.1016/j.foodchem.2006.12.025

Schwarz K, Huang S, German JB, Tiersch B. 2000. Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. J. Agric. Food Chem. 48, 4874-4882. https://doi.org/10.1021/jf991289a PMid:11052748

Silva FAM, Borges F, Guimarães C, Lima JLFC, Matos C, Reis S. 2000. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem. 48, 2122-2126. https://doi.org/10.1021/jf9913110 PMid:10888509

Teixeira J, Silva T, Benfeito S, Gaspar A, Garrido EM, Garrido J, Borges F. 2013. Exploring nature profits: Development of novel and potent lipophilic antioxidants based on galloyl-cinnamic hybrids. Eur. J. Med. Chem. 62, 289-296. https://doi.org/10.1016/j.ejmech.2012.12.049 PMid:23357310

Torres de Pinedo A, Peñalver P, Morales JC. 2007. Synthesis and evaluation of new phenolic-based antioxidants: Structure-activity relationship. Food Chem. 103, 55-61. https://doi.org/10.1016/j.foodchem.2006.07.026

Weng XC, Huang Y. 2014. Relationship structure-antioxidant activity of hindered phenolic compounds. Grasas Aceites 65, e051. https://doi.org/10.3989/gya.0225141

Zhang CX, Wu H, Weng XC. 2004. Two novel synthetic antioxidants for deep frying oils. Food Chem. 84, 219-222. https://doi.org/10.1016/S0308-8146(03)00205-X

Zhong Y, Shahidi F. 2012. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chem. 131, 22-30. https://doi.org/10.1016/j.foodchem.2011.07.089

Publicado

2022-09-08

Cómo citar

1.
Olajide T, Liu T, Weng X, Liao X, Huang J. Propiedades antioxidantes de dos nuevos derivados lipofílicos del ácido gálico. Grasas aceites [Internet]. 8 de septiembre de 2022 [citado 1 de mayo de 2025];73(3):e473. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1950

Número

Sección

Investigación