Preparación de sustitutos de grasa de leche humana y mejora de su estabilidad oxidativa

Autores/as

DOI:

https://doi.org/10.3989/gya.0444211

Palabras clave:

1,3-dioleoil-2-palmitoilglicerol, Estabilidad oxidativa, Interesterificación enzimática, Mezcla física, Sucedáneos de grasa de leche humana

Resumen


Se sintetizó el 1,3-dioleoil-2-palmitoilglicerol (OPO), utilizando estearina de palma rica en tripalmitina (PPP) y oleato de etilo, mediante interesterificación enzimática. Se optimizaron los parámetros de la interesterificación enzimática, como la temperatura, el contenido de agua, la carga de enzimas y la relación molar del sustrato. Se lograron altos rendimientos de C52 (principalmente OPO y sus isómeros, 46,7%) y un contenido de ácido palmítico (PA) en sn-2 del 75,3%. Además, el sustituto graso de leche humana OPO (HMFS), se mezcló con aceites de coco, soja, algas y microbianos, en una proporción en peso de 0,70:0,18:0,11:0,004:0,007 para simular los ácidos grasos de la leche humana (HMF) de acuerdo con un modelo matemático. Los ácidos grasos principales e importantes en HMFS-Final estaban casi dentro de los rangos de los presentes en HMF. El HMFS-Final podría promover la absorción de grasas y minerales y el desarrollo de los tejidos de la retina en los bebés. La mezcla de palmitato de L-ascorbilo (L-AP) y vitamina E (VE) resultó tener un efecto antioxidante sinérgico, tanto en la emulsión OPO-HMFS como en la OPO-HMFS. Este hallazgo tiene una gran importancia para mejorar la calidad y prolongar la vida útil de HMFS.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ab Ed, S M, Zou X, Ali AH, Jin Q, Wang X. 2017. Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. Biores. Technol. 243, 448-456. https://doi.org/10.1016/j.biortech.2017.06.090 PMid:28688328

AOCS. 1997. Official methods and recommended practices of the American Oil Chemists' Society. 5th. edition, 383 Champaign, USA.

AOCS. 2009. Official methods and recommended practices of the American Oil Chemists' Society. 6th. edition, Cj1-94 Champaign, USA.

Chen QQ, Pasdar H, Weng XC. 2020. Butylated methyl caffeate: a novel antioxidant. Grasas Aceites, 71, 352. https://doi.org/10.3989/gya.0226191

Esteban L, Jimenez M J, Hita E, Gonzalez PA, Martin L, Robles A. 2011. Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem. Eng. J. 54, 62-69. https://doi.org/10.1016/j.bej.2011.01.009

Ghide MK, Yan Y. 2021. 1,3-Dioleoyl-2-palmitoyl glycerol (OPO)-Enzymatic synthesis and use as an important supplement in infant formulas. J. Food Biochem. 45 (2), 13799. https://doi.org/10.1111/jfbc.13799 PMid:34080206

Haddad I, Mozzon M, Frega NG. 2012. Trends in fatty acids positional distribution in human colostrum, transitional, and mature milk. Eur. Food. Res. Technol. 235, 325-332. https://doi.org/10.1007/s00217-012-1759-y

Hoffman DR, Boettcher JA, Diersen-Schade DA. 2009. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Plefa Medline 81,151-158. https://doi.org/10.1016/j.plefa.2009.05.003 PMid:19505812

Hu M, Mcclements DJ, Decker EA. 2003. Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. J. Agric. Food Chem. 51, 1696-1700. https://doi.org/10.1021/jf020952j PMid:12617607

Jimenez MJ, Esteban L, Robles A, Hita E, Gonzalez PA, Munio MM, Molina E. 2010. Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem. 45, 407-414. https://doi.org/10.1016/j.procbio.2009.10.018

Lee JH, Chang HJ. 2021. Regiospecific Positioning of Palmitic Acid in Triacylglycerol Structure of Enzymatically Modified Lipids Affects Physicochemical and In Vitro Digestion Properties. Molecules 26 (13), 4015-4015. https://doi.org/10.3390/molecules26134015 PMid:34209258 PMCid:PMC8271560

Lee JH, Son JM, Akoh CC, Kim MR, Lee KT. 2010. Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from thermomyces lanuginosus. New Biotechnol. 27, 38-45. https://doi.org/10.1016/j.nbt.2009.10.006 PMid:19879984

Li W, Du W, Li Q, Li RW, Liu DH. 2010. Dependence on the properties of organic solvent: study on acyl migration kinetics of partial glycerides. Bioresource Technol. 101, 5737-5742. https://doi.org/10.1016/j.biortech.2010.03.018 PMid:20307973

Liu CS, Tian JJ, Zhang RW, Xu JT, Nie K, Deng L, Wang F. 2020. Solvent-Free Alcoholysis of Tripalmitin to Produce 2-Monoglyceride as Precursor for 1, 3-Oleoyl-2-Palmitoyl-glycerol. Appl. Biochem. Biotechnol. 190, 867-879. https://doi.org/10.1007/s12010-019-03136-5 PMid:31506906

Nielsen NS, Yang TK, Xu XB, Jacobsen C. 2006. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food. Chem. 94, 53-60. https://doi.org/10.1016/j.foodchem.2004.10.049

Olajide TM, Liu T, Liu HA, Weng XC. 2020. Antioxidant properties of two novel lipophilic derivatives of hydroxytyrosol. Food Chem. 315, 126-197. https://doi.org/10.1016/j.foodchem.2020.126197 PMid:32018079

Qin XL, Zhong JF, Wang YH, Yang B, Lan DM, Wang FH. 2014. 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes: production, purification, characterization and modeling of the formulation. Eur. J. Lipid Sci. Technol. 116, 282-290. https://doi.org/10.1002/ejlt.201300343

Sakai T, Kuwazuru S, Yamauchi, K, Uchida K. 1995. A lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal and omega 6 fatty acids contents in meats. Biosci Biotech Bioch. 59, 1379-1380. https://doi.org/10.1271/bbb.59.1379 PMid:7670203

Sala-Vila A, Castellote AI, Rodriguez-Palmero M, Campoy C, Lopez-Sabater MC. 2005. Lipid composition in human breast milk from Granada (Spain): changes during lactation. Nutrition. 21, 467-473. https://doi.org/10.1016/j.nut.2004.08.020 PMid:15811767

Shi G, Liao X, Olajide TM, Liu J, Jiang X, Weng XC. 2017. Butylated caffeic acid: An efficient novel antioxidant. Grasas Aceites, 68, e201. https://doi.org/10.3989/gya.1278162

Srivastava A, Akoh CC, Chang SW, Lee GC, Shaw JF. 2006. Candida rugosa lipase lip1-catalyzed interesterification to produce human milk fat substitute. J. Agric. Food Chem. 54, 5175. https://doi.org/10.1021/jf060623h PMid:16819932

Victoria CG, Horta BL, de Mola CL, Quevedo L, Pinheiro RT, Gigante DP, Goncalves H, Barros FC. 2015. Association between breastfeeding and intelligence, educational attainment, and income at 30 years of age: a prospective birth cohort study from Brazil. Lancet. Glob. Health. 3, E199-E205. https://doi.org/10.1016/S2214-109X(15)70002-1 PMid:25794674

Wang X, Jiang C, Xu W, Miu Z. 2019. Enzymatic synthesis of structured triacylglycerols rich in 1,3-dioleoyl-2-palmitoylglycerol and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol in a solvent-free system. Lwt-Food Sci. Technol. 118(C), 108798-108798. https://doi.org/10.1016/j.lwt.2019.108798

Wei W, Feng YF, Zhang X, Ca X, Feng FQ. 2015. Synthesis of structured lipid 1,3-dioleoyl-2-palmitoylglycerol in both solvent and solvent-free system. Lwt-Food Sci. Technol. 60, 1187-1194. https://doi.org/10.1016/j.lwt.2014.09.013

Xu X, Skands ARH, Hoy CE, Mu H, Balchen S, Adler-Nissen, J. 1998. Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design. J. Am. Oil. Chem. Soc. 75, 1179-1186. https://doi.org/10.1007/s11746-998-0309-z

Zou XQ, Guo Z, Huang JH, Jin QZ, Cheong LZ, Wang XG, Xu XB. 2012a. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. J. Agric. Food Chem. 60, 7158-67. https://doi.org/10.1021/jf3013597 PMid:22747344

Zou XQ, Huang JH, Jin QZ, Liu YF, Tao GJ, Cheong LZ, Wang XG. 2012b. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods. J. Agric. Food Chem. 60, 9415-9423. https://doi.org/10.1021/jf3017354 PMid:22920386

Publicado

2023-03-24

Cómo citar

1.
Liu H, Huang J, Olajide T, Liu T, Liu Z, Liao X, Weng X. Preparación de sustitutos de grasa de leche humana y mejora de su estabilidad oxidativa. Grasas aceites [Internet]. 24 de marzo de 2023 [citado 1 de mayo de 2025];74(1):e495. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1975

Número

Sección

Investigación

Datos de los fondos