Grasas y Aceites, Vol 67, No 4 (2016)

A neuroimaging study of pleasant and unpleasant olfactory perceptions of virgin olive oil


https://doi.org/10.3989/gya.0329161

J. Vivancos
Hospital San Juan de Dios, Spain

N. Tena
Instituto de la Grasa (CSIC), Spain

M. T. Morales
Department of Analytical Chemistry, University of Seville, Spain

R. Aparicio
Instituto de la Grasa (CSIC), Spain

D. L. García-González
Instituto de la Grasa (CSIC), Spain

Abstract


Functional magnetic resonance imaging (fMRI) has been used to collect information from neurons that receive direct input from olfactory bulbs when subjects smell virgin olive oil. The pleasant aroma of three extra virgin olive oils (var. Royal, Arbequina and Picual) and three virgin olive oils with sensory defects (rancid, fusty and winey/vinegary) were presented to 14 subjects while a fMRI scan acquired data from the brain activity. Data were subjected to a two-sample t test analysis, which allows a better interpretation of results particularly when data are studied across different subjects. Most of the activations, which were located in the frontal lobe, are related to the olfactory task regardless of the hedonic component of perception (e.g. Brodmann areas 10, 11). Comparing the samples with pleasant and unpleasant aromas, differences were found at the anterior cingulate gyrus (Brodmann area 32), at the temporal lobe (Brodmann area 38), and inferior frontal gyrus (Brodmann area 47), while intense aromas activated Brodmann area 6. The actual perceptions described by the subjects and the concentration of the odorant compounds in the samples were considered in the interpretation of the results.

Keywords


Aroma; Brain activation; Brodmann areas; fMRI; Olfaction; Virgin olive oil

Full Text:


HTML PDF XML

References


Bedny M, Konkle T, Pelphrey K, Saxe R, Pascual-Leone A. 2010. Sensitive period for a multimodal response in human visual motion area MT/MST. Curr. Biol. 20, 1900–1906. https://doi.org/10.1016/j.cub.2010.09.044 PMid:20970337 PMCid:PMC2998392

Bifone A, Gozzi A, Schwarz AJ. 2010. Functional connectivity in the rat brain: A complex network approach. Magn. Reson. Imaging 28, 1200–1209. https://doi.org/10.1016/j.mri.2010.07.001 PMid:20813478

Britton JC, Phan KL, Taylor SF, Welsh RC, Berridge KC, Liberzon I. 2006. Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage 31, 397–409. https://doi.org/10.1016/j.neuroimage.2005.11.027 PMid:16414281

Cerf-Ducastel B, Murphy C. 2001. fMRI activation in response to odorants orally delivered in aqueous solutions. Chem. Senses 26, 625–637. https://doi.org/10.1093/chemse/26.6.625 PMid:11473928

Cerf-Ducastel B, Murphy C. 2004. Validation of a stimulation protocol suited to the investigation of odor-taste interactions with fMRI. Physiol. Behav. 81, 389–396. https://doi.org/10.1016/j.physbeh.2003.12.018 PMid:15135010

Cutting LE, Clements AM, Courtney S, Rimrodt SL, Schafer JGB, Bisesi J, Pekar JJ, Pugh KR. 2006. Differential components of sentence comprehension: Beyond single word reading and memory. NeuroImage 29, 429–438. https://doi.org/10.1016/j.neuroimage.2005.07.057 PMid:16253527

Eugène F, Lévesque J, Mensour B, Leroux JM, Beaudoin G. Bourgouinc P, Beauregard M. 2003. The impact of individual differences on the neural circuitry underlying sadness. NeuroImage 19, 354–364. https://doi.org/10.1016/S1053-8119(03)00121-6

Fulbright RK, Skudlarski P, Lacadie CM, Warrenburg S, Bowers AA, Bourgouin P, Beauregard M. 1998. Functional MR imaging of regional brain responses to pleasant and unpleasant odors. Am. J. Neuroradiol. 19, 1721–1726. PMid:9802496

García-Falgueras A, Junque C, Giménez M, Caldú X, Segovia S, Guillamon A. 2006. Sex differences in the human olfactory system. Brain Res. 1116, 103–111. https://doi.org/10.1016/j.brainres.2006.07.115 PMid:16942757

García-González DL, Morales MT, Aparicio R. 2010. Olive and olive oil, in Hui YH (Ed.) Handbook of fruit and vegetable flavors. Wiley, Sommerset. 821–847.

García-González DL, Tena N, Aparicio R. 2007. Characterization of olive paste volatiles to predict the sensory quality of virgin olive oil. Eur. J. Lipid Sci. Technol. 109, 663–672. https://doi.org/10.1002/ejlt.200700056

García-González DL, Vivancos J, Aparicio R. 2011. Mapping brain activity induced by olfaction of virgin olive oil aroma. J. Agric. Food Chem. 59, 10200–10210. https://doi.org/10.1021/jf202106b PMid:21838262

Hirsh J, Rodríguez Moreno D, Kim KHS. 2001. Interconnected large-scale systems for three cognitive tasks revealed by functional MRI. J. Cogn. Neurosci. 13, 389–405. https://doi.org/10.1162/08989290151137421

International Olive Council (IOC). 2015. Sensory analysis of virgin olive oil. Method for the Organoleptic assessment of virgin olive oil. COI/T.20/ Doc. No. 15 Rev.8, November 2015, Madrid, Spain.

Kim KK, Byun E, Lee SK, Gaillard WD, Xu B, Theodore WH. 2011. Verbal working memory of Korean-English bilinguals: An fMRI study. J. Neurolinguist 24, 1–13. https://doi.org/10.1016/j.jneuroling.2010.07.001

Kosslyn SM, Shin LM, Thompson WL, McNally RJ, Rauch S, Pitman RK, Alpert NM. 1996. Neural effects of visualizing and perceiving aversive stimuli: A PET investigation. Neuroreport 7, 1569–1576. https://doi.org/10.1097/00001756-199607080-00007 PMid:8904757

Miyanari A, Kaneoke Y, Noguchi Y, Honda M, Sadato N, Sagara Y, Kakigi R. 2007. Human brain activation in response to olfactory stimulation by intravenous administration of odorants. Neurosci. Lett. 423, 6–11. https://doi.org/10.1016/j.neulet.2007.06.039 PMid:17658690

Morales MT, Luna G, Aparicio R. 2005. Comparative study of virgin olive oil sensory defects. Food Chem. 91, 293–301. https://doi.org/10.1016/j.foodchem.2004.06.011

Pelletier M, Bouthillier A, Lévesque J, Carrier S, Breault C, Paquette V, Mensour B, Leroux JM, Beaudoin G, Bourgouin P, Beauregard M. 2003. Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. Neuroreport 14, 1111–1116. https://doi.org/10.1097/00001756-200306110-00003 PMid:12821792

Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosena BR, Kwong KK. 2001. Activation and habituation in olfaction - An fMRI study. Neuroimage 13, 547–560. https://doi.org/10.1006/nimg.2000.0713 PMid:11305885

Qureshy A, Kawashima R, Imran MB, Sugiura M, Goto R. 2000. Functional mapping of human brain in olfactory processing: A PET study. J. Neurophysiol. 84, 1656–1666. PMid:10980035

Rolls ET, Kringelbach ML, De Araujo IET. 2003. Different representations of pleasant and unpleasant odours in the human brain. Eur. J. Neurosci. 18, 695–703. https://doi.org/10.1046/j.1460-9568.2003.02779.x PMid:12911766

Rouby C, Bensafi M. 2002. Is there a hedonic dimension to odours, in Schaal B, Rouby C, Holley A (Ed.) Olfaction, taste, and cognition. Cambridge University, West Nyack, 140–159.

Royet JP, Koenig O, Gregoire MC, Cinotti L, Lavenne F, Le Bars D, Costes N, Vigouroux M, Farget V, Sicard G, Holley A, Mauguière F, Comar D, Froment JC. 1999. Functional anatomy of perceptual and semantic processing for odors. J. Cogn. Neurosci. 11, 94–109. https://doi.org/10.1162/089892999563166 PMid:9950717

Royet JP, Plailly J. 2004. Lateralization of olfactory processes. Chem. Senses 29, 731–745. https://doi.org/10.1093/chemse/bjh067 PMid:15466819

Royet JP, Plailly J, Delon-Martin C, Kareken DA, Segebarth C. 2003. fMRI of emotional responses to odors: Influence of hedonic valence and judgment, handedness, and gender. Neuroimage 20, 713–728. https://doi.org/10.1016/S1053-8119(03)00388-4

Savic I, Berglund H. 2004. Passive perception of odors and semantic circuits. Hum. Brain Mapp. 21, 271–278. https://doi.org/10.1002/hbm.20009 PMid:15038008

Savic I, Gulyas B, Larsson M, Roland P. 2000. Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26, 735–745. https://doi.org/10.1016/S0896-6273(00)81209-X

Tabert MH, Steffener J, Albers MW, Kern DW, Michael M, Tangd H, Brownd TR, Devanand DP. 2007. Validation and optimization of statistical approaches for modeling odorant-induced fMRI signal changes in olfactory-related brain areas. Neuroimage 34, 1375–1390. https://doi.org/10.1016/j.neuroimage.2006.11.020 PMid:17196831

Talairach J, Tournoux P. 1988. Co-Planar stereotaxic atlas of the human brain. Thieme, Stuttgart. ISBN-10: 0865772932. PMid:3129671

Tena N, Lazzez A, Aparicio-Ruiz R, García-González DL. 2007. Volatile compounds characterizing Tunisian Chemlali and Chetoui virgin olive oils. J. Agric. Food Chem. 55, 7852–7858. https://doi.org/10.1021/jf071030p PMid:17708651

Uher R, Murphy T, Friederich HC, Dalgleish T, Brammer MJ, Giampietro V, Phillips ML, Andrew CM, Ng VW, Williams SCR, Campbell IC, Treasure J. 2005. Functional neuroanatomy of body shape perception in healthy and eating-disordered women. Biol. Psychiatry 58, 990–997. https://doi.org/10.1016/j.biopsych.2005.06.001 PMid:16084858

Verhagen JV, Engelen L. 2006. The neurocognitive bases of human multimodal food perception: Sensory integration. Neurosci. Biobehav. Rev. 30, 613–650. https://doi.org/10.1016/j.neubiorev.2005.11.003 PMid:16457886

Yamasaki H, LaBar KS, McCarthy G. 2002. Dissociable prefrontal brain systems for attention and emotion. Proc. Natl. Acad. Sci. USA 99, 11447–11451. https://doi.org/10.1073/pnas.182176499 PMid:12177452 PMCid:PMC123276

Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E. 1992. Functional localization and lateralization of human olfactory cortex. Nature 360, 339–340. https://doi.org/10.1038/360339a0 PMid:1448149




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es