Neural networks to formulate special fats


  • R. K. Garcia Laboratório de Óleos e Gorduras/FEA/UNICAMP
  • K. Moreira Gandra Laboratório de Óleos e Gorduras/FEA/UNICAMP
  • J. M. Block Departamento de Ciência e Tecnologia de Alimentos, CCA/UFSC
  • D. Barrera-Arellano Laboratório de Óleos e Gorduras/FEA/UNICAMP



Blending, Interesterified fats, Neural networks, Shortenings, Special fats


Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX). All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.


Download data is not yet available.


Anklam E, Bassani MR, Eiberger T. 1997. Characterization of cocoa butters and other vegetable fats by pyrolysis mass spectrometry. Fresen. J. Anal. Chem. 357, 981-984.

Arteaga GE, NakaiI S. 1993. Predicting protein functionality with artificial neural networks: foaming and emulsifying properties. J. Food Sci. 58, 1152-1156.

Barrera-Arellano D, Akamine EA, Garcia RKA, Gandra KM. 2011. Zero trans fats formulation through a neural network operated with five components: two soybean-soybean interesterified fats, palm, soybean and palm kernel oils. In: 9th Euro Fed Lipid Congress, Rotterdam, The Netherlands, Abstract.

Barrera-Arellano D, Block JM, Grimaldi R, Figueiredo MF, Gomide FAC, Almeida RR. 2005. Programa MIX— Software for the formulation of fats with neural networks. Register INPI 98003155, Campinas, Brazil.

Barbosa AH, Freitas MSR, Neves FA. 2005. Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais. Rev. Esc. de Minas 58, 247-255.

Barile D, Coisson JD, Arlorio M, Rinaldi M. 2006. Identification of production area of Ossolano Italian cheese with chemometric complex approach. Food Control 17, 197-206.

Berg EP, Engel BA, Forrest JC. 1998. Pork carcass composition derived from a neural network model of electromagnetic scans. J. Anim. Sci. 76, 18-22. PMid :9464879

Block JM, Barrera-Arellano D, Figueiredo MF, Gomide FC. 1997. Blending process optimization into special fat formulation by neural networks. J. Am. Oil Chem. Soc. 74, 1537-1541.

Block JM, Barrera-Arellano D, Figueiredo MF, Gomide FC, Sauer L. 1999. Formulation of special fats by neural networks: A statistical approach. J. Am. Oil Chem. Soc. 76, 1357-1361.

Block JM, Barrera-Arellano D, Almeida R, Gomide FC, Moretti RB. 2003. Formulación de grasas a través de redes neuronales: productos comerciales y producción en planta piloto. Grasas Aceites 54, 240-244.

Borggaard C, Madsen NT, Thodberg HH. 1996. In-line image analysis in the slaughter industry, illustrated by Beef Carcass Classification. Meat Sci. 43, 151-163.

Brito LAL. 1994. Importancia de la instrumentación y computarización en programas de calidad total. Aceites y Grasas 15, 99-102.

Carrapiso A, Ventanas J, Jurado A, García C. 2001. An electronic nose to classify Iberian pig fats with different fatty acid composition. J. Am. Oil Chem. Soc. 78, 415-418.

Cebula DJ, Smith KW. 1991. Differential scanning calorimetry of confectionery fats. Pure triglycerides: Effects of cooling and heating rate variation. J. Am. Oil Chem. Soc. 68, 591-595.

Cerqueira EO, Andrade JC, Poppi RJ, Mello C. 2001. Redes Neurais e suas aplicações em calibração multivariada. Quim. Nova 24, 864-873.

Chiu MC, Gioielli LA, Grimaldi R. 2008. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média, II - pontos de amolecimento e fusão. Quim. Nova 31, 238-243.

Cimpoiu C, Cristea V, Hosu A, Sandru M, Seserman L. 2011. Antioxidant activity prediction and classification of some teas using artificial neural networks. Food Chem. 127, 1323-1328.

Cheroutre-Vialette M, Lebert A. 2002. Application of recurrent neural network to predict bacterial growth in dynamic conditions. Int. J. Food Microbiol. 73, 107-118.

Da Cruz AG, Walter EHM, Cadena RS, Faria JAF, Bolini HMA, Franttini-Fileti AM. Monitoring the authenticity of low-fat yogurts by an artificial neural network. J. Dairy Sci. 92, 4797-4804. PMid :19762794

Daniels RL, Kim HJ, Min DB. 2006. Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil. J. Agr. Food Chem. 54, 6011-6015. PMid :16881709

Eyng E, Fileti AMF. 2010. Control of absorption columns in the bioethanol process: Influence of measurement uncertainties. Eng. Appl. Artif. Intel. 23, 271-282.

Erickson DR, Erickson MD. 1995. Hydrogenation and base stock formulation procedures, en Erickson DR (ed.) Pratical Handbook of Soybean Processing and Utilization. AOCS Press, Champaign, 218-238.

Gallegos-Infante JA, Rocha-Guzman NE, Gonzalez-Laredo RF, Rico-Martinez R. 2002. The Kinetics of crystalization of tripalmitin in olive oil: An artificial neural network approach. J. Food Lipids 9, 73-86.

Gandra, KM. 2011. Formulação de gorduras zero trans para recheio de biscoitos utilizando redes neurais. University of Campinas (UNICAMP). Campinas, Brazil.

Gandra KM, García RKA, Block JM, Barrera-Arellano D. 2009. Construction and training of a neural network for the formulation of specialty fats using interesterified fats. In: World Congress on Oils and Fats & 28th ISF Congress. Oils and fats essential for life - Program & Abstract Book, Sydney, p 117-118.

Garcia RKA. 2010. Formulação de gorduras para aplicação em margarinas zero trans com redes neurais a partir de gorduras interesterificadas. University of Campinas (UNICAMP). Campinas, Brazil.

García RKA, Gandra KM, Barrera-Arellano D. 2010. Formulação de blends para aplicação em margarinas zero trans por redes neurais baseado no SFC e ponto de fusão de gorduras comerciais. In: V Simpósio Internacional Tendências e Inovações em Tecnologia de Óleos e Gorduras, Campinas, Brazil.

Glassey J, Montague GA, Ward RD, Kara BV. 1994. Artificial neural networks based experimental design procedures for enhancing fermentation development. Biotechnol. Bioeng. 44, 397-405. PMid :18618773

Gomes HM, Awruch AM. 2004. Comparison of response surface and neural network with others methods for structural reliability analysis. Struct. Saf. 26, 49-67.

Goodacre R, Kell DB, Bianchi G. 1993. Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass-spectrometry and artificial neural networks. J. Sci. Food Agr. 63, 297-307.

Goshawk JA, Binding DM, Kell DB. 1998. Rheological phenomena occurring during the shearing flow of mayonnaise. J. Rheol. 42, 1537-1553.

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewood Cliffs, NJ.

Haugen JE. 2001. Electronic noses in food analysis, en Rouseff L.R., Cadwallader K.R. (ed.) Headspace analysis of foods and flavors: Theory and Practice (Advancesin Experimental Medicine and Biology). Kluwer Academic Plenum Publishers, New York, 488, 43-57.

Huang Y, Whittaker AD, Lacey RE. 1998. Neural network prediction modeling for a continuous, snack food frying process. T ASAE 41, 1511-1517.

Humphrey KL, Narine SS. 2004. A comparison of lipid shortening functionality as a function of molecular ensemble and shear: Crystallization and melting. Food Res. Int. 37, 11-27.

Hush DR, Horne BG. 1993. Progress in supervised neural networks. IEEE Signal Proc. Mag. 10, 8-39.

Indahl UG, Sahni NS, Kirkhus B, Naes T. 1999. Multivariate strategies for classification based on NIR-spectra - with application to mayonnaise. Chem. Intellig. Lab. Syst. 49, 19-31.

Jayas DS, Paliwal J, Visen NS. 2000. Multi-layer neural networks for image analysis of agricultural products. J. Agr. Eng. Res. 77, 119-128.

Jansson PA. 1991. Neural networks: an overview. Anal. Chem. 63, 357-362

Katz WT, Snell JW, Merickel MB. 1992. Artificial Neural Networks. Method Enzymol. 210, 610-636.

Khataee AR, Kasiri MB. 2010. Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. J. Mol. Catal. A: Chem. 331, 86-100.

Kruzlicova D, Mocak J, Balla B, Petka J, Farkova M, Havel J. 2009. Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem. 112, 1046-1052

Lange J, Wittmann C. 2002. Enzyme sensor array for the determination of biogenic amines in food samples. Analyt. Bioanalyt. Chem. 372, 276-283. PMid :11936099

Lefebvre J. 1983. Finished product formulation. J. Am. Oil Chem. 60, 295-300.

Lemes MR, Junior ADP. 2008. A tabela periódica dos elementos químicos prevista por redes neurais artificiais de kohonen. Quim. Nova 31, 1141-1144.

Lichan E. Developments in the detection of adulteration of olive oil. 1994. Trends Food Sci. Tech. 5, 3-11. PMid :21299575

Lipp M. 1996. Determination of the adulteration of butter fat by its triglyceride composition obtained by GC - A comparison of the suitability of PLS and neural networks. Food Chem. 55, 389-395.

Liu XQ, Tan JL. 1999. Acoustic wave analysis for food crispness evaluation. J. Text. Stud. 30, 397-408.

Lou W, Nakai S. 2001. Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products. J. Agric. Food Chem. 49, 1799-1804. PMid :11308328

Marini F. 2009. Artificial neural networks in foodstuff analyses: Trends and perspectives - A review. Anal. Chim. Acta 635, 121-131. PMid :19216869

Márquez AJ, Herrera MPA, Ojeda UM, Maza GB. 2009. Neural network as tool for virgin olive oil elaboration process optimization. J. Food Eng. 95, 135-141.

Martin YG, Pavon JLP, Cordero BM. 1999. Classification of vegetable oils by linear discriminant analysis of Electronic Nose data. Anal. Chim. Acta 384, 83-94.

Mattioni B. 2010. Aplicação de redes neurais na formulação de gorduras para massa folhada baseada em gorduras interesterificadas de soja e algodão. University of Santa Catarina. Florianópolis, Brazil.

McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5, 115-133.

Meisel H, Lorenzen PC, Martin D. 1997. Chemometric identification of butter types by analysis of compositional parameters with neural networks. Nahrung 41, 75-80.

Mutlu AC, Boyaci IH, Genis HE, Ozturk R, Basaran-Akgul N, Sanal T, Evlice AK. 2011. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. Eur. Food Res. Technol. 233, 267-274.

Ni HX, Gunasekaran S. 1998. Food quality prediction with neural networks. Food Technol. 52, 60-65. Nitatori CY, Gandra KM, Garcia RKA, Barrera-Arellano D. 2010. Construção e treinamento de uma rede neural para formulação de gorduras especiais a partir de gorduras interesterificadas, óleos de soja e palma. In: XVII Congresso de Iniciação Científica da Unicamp, Campinas, Brazil.

O’Brien RD. 2004. Fats and Oils - Formulating and Processing for Applications. CRC Press, New York.

Poulton MM. 2002. Neural networks as an intelligence amplification tool: A review of applications. Geophysics 67, 979-993.

Przybylski R, Zambiazi R. 2000. Predicting Oxidative Stability of Vegetable Oils Using Neural Network System and Endogenous Oil Components. J. Am. Oil Chem. Soc. 77, 925-931.

Ramli N, Said M, Loon NT. 2005. Physicochemical characteristics of binary mixtures of hydrogenated palm kernel oil and Goat milk fat. J. Food Lipids 12, 243-260.

Ribeiro APB, Masuchi MH, Grimaldi R, Gonçalves LAG. 2009. Interesterificação química de óleo de soja e óleo de soja totalmente hidrogenado: influência do tempo de reação. Quim Nova 32, 939-945.

Romero RAF, Lanças FM, Guizo SJ, Berton SR. 1991. Classification of edible oils using neural networks. Proceedings/Anais of International Meeting on Fats and Oils Technology - Symposium and Exhibition, Campinas, Brazil, 9-11.

Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning internal representations by error propagation. En: Rumelhart DE, McClelland JL (ed) Parallel Distribuited Processing: Explorations in the Microstruture of Cognition. MIT Press, Cambridge, 318-362.

Scaranto BAA. 2010. Aplicação de redes neurais na formulação de gorduras para bolo baseada em gorduras interesterificadas de soja e algodão. University of Santa Catarina, Florianópolis, Brazil.

Smallwood NJ. 1989. Using computers for oil blending. J. Am. Oil Chem. Soc. 66, 644-648.

Sofu A, Ekinci FY. 2007. Estimation of Storage Time of Yogurt with Artificial Neural Network Modeling. J. Dairy Sci. 90, 3118-3125. PMid :17582093

Sorsa T, Koivo H, Koivisto H. 1991. Neural networks in process fault diagnosis. IEEE Trans. Systems Man, and Cybernetics 21, 815-825.

Sousa EA, Teixeira LCV, Mello MRPA, Torres EAFS, Neto JMM. 2003. Aplicação de redes neurais para avaliação do teor de carne mecanicamente separada em salsicha de frango. Ciênc. e Tecnol. de Alim. 23, 307-311.

Stauffer CE. 2006. Uso de las grasas y los aceites en productos de panadería y confíteria. Grasas Aceites 3, 420-432.

Timms RE. 1985. Physical properties of oils and mixture. J. Am. Oil Chem. Soc. 62, 241-248.

Widrow B, Lehr M. 1990. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of IEEE 78, 1415-1442.

Vafaei MT, Eslamloueyan R, Ayatollahi SH. 2009. Simulation of steam distillation process using neural networks. Chem. Eng. Res. Des. 87, 997-1002

Vieira WG, Santos VML, Carvalho FR, Pereira JAFR, Fileti AMF. 2005. Identification and predictive control of a FCC unit using a MIMO neural model. Chem. Eng. Process 44, 855-868.

Yuan JQ, Vanrolleghem PA. 1999. Rolling learningprediction of product formation in bioprocesses. J. Biotechnol. 69, 47-62.

Zafra A. 1993. Automation and refining. Inform 4, 166.

Zhang Q, Reid JF, Litchfield B, Ren J, Chang S. 1994. A prototype neural network supervised control system for Bacillus thuringiensis fermentations. Biotechnol. Bioeng. 43, 483-489. PMid :18615745




How to Cite

Garcia RK, Moreira Gandra K, Block JM, Barrera-Arellano D. Neural networks to formulate special fats. grasasaceites [Internet]. 2012Sep.30 [cited 2022Dec.10];63(3):245-52. Available from:




Most read articles by the same author(s)

1 2 > >>