Zero trans biscuits with soybean-based fats formulated using an artificial neural network




Cookie, Interesterified fat, Marie-type, Neural network, Trans fat


This study applied Artificial Neural Network (ANN) technology to formulate zero trans fat blends derived from soybeans and to evaluate their performance when applied to the processing of sweet laminated biscuits. For the formulation of the blends, two interesterified soybean fats and soybean oil were used as bases. They were characterized in terms of melting point, solid fat content and fatty acid composition; and the biscuits produced were analyzed for their technological (dimensions, mass, volume, expansion, instrumental color and texture, moisture gradient and cracking) and physicochemical characteristics (total fat and moisture contents, water activity and fatty acid composition). It was possible to verify the use of ANN to develop zero trans fats derived from soybeans for application in sweet laminated biscuits, which represents an operational and financial advantage. Moreover, we showed the viability of using soybean fats/oil, raw materials of greater availability and lower cost, for the production of biscuits.


Download data is not yet available.


American Association of Cereal Chemistry International (AACCI). 2010. Approved Methods of Analysis. AACC International, Saint Paul, USA.

American Oil Chemists' Society (AOCS). 2005. Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Chemists' Society Press, Champaign, USA.

Bernussi ALM, Chang YK, Martínez-Bustos F. 1998. Effects of production by microwave heating after conventional baking on moisture gradient and product quality of biscuits (Cookies). Cereal Chem. 75, 606–611.

Block JM, Barrera-Arellano D, Almeida R, Gomide FC, Moretti RB. 2003. Formulación de grasas a través de redes neuronales: productos comerciales y producción en planta piloto. Grasas Aceites 54, 240–244.

Block JM, Barrera-Arellano D, Figueiredo M, Gomide FC. 1997. Blending process optimization into special fat formulation by neural networks. J. Am. Oil Chem. Soc. 74, 1537–1541.

Block JM, Barrera-Arellano D, Figueiredo M, Gomide FC, Sauer L. 1999. Formulation of special fats by neural networks: a statistical approach. J. Am. Oil Chem. Soc. 76, 1357–1361.

BRASIL. 2012. Resoluçãon° 54, de12denovembrode2012. Regulamento técnico sobre Informação Nutricional Complementar. Diário Oficial da União, Brasília, BRA. br/documents/33880/2568070/rdc0054_12_11_2012.pdf/ c5ac23fd-974e-4f2c-9fbc-48f7e0a31864.

Cerqueira EO, Andrade JC, Poppi RJ, Mello C. 2001. Redes neurais e suas aplicações em calibração multivariada. Quím. Nova 24, 864–873.

Dhaka V, Gulia N, Ahlawat KS, Khatkar BS. 2011. Trans fats - sources, health risks and alternative approach - A review. J. Food Sci. Technol. 48, 534–541. PMid:23572785 PMCid:PMC3551118

Doan CD, Tavernier I, Danthine S, Rimaux T, Dewettinck K. 2018. Physical compatibility between wax esters and triglycerides in hybrid shortenings and margarines prepared in rice bran oil. J. Sci. Food Agric. 98, 1042–1051. PMid:28718922

Francis JF, Clydesdale FM. 1975. Food colorimetry, theory and application. Van Nostrand Reinhold/AVI, New York, USA.

Gandra KM. 2011. Formulação de gorduras zero trans para recheio de biscoitos utilizando redes neurais. Tese de Doutorado, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, BRA.

Garcia RKA, Gandra KM, Barrera-Arellano D. 2013. Development of a zero trans margarine from soybean-based interesterified fats formulated using neural networks. Grasas Aceites 64, 521–530.

Garcia RK, Gandra KM, Block JM, Barrera-Arellano D. 2012. Neural networks to formulate special fats. Grasas Aceites 63, 245–252.

Ghotra BS, Dyal SD, Narine SS. 2002. Lipid shortenings: a review. Food Res. Int. 35, 1015–1048.

Grimaldi R, Gonçalves LAG. 2009. Evolução da saudabilidade das gorduras "low trans/low sat" para massas de biscoitos. Food Ingredients Brasil 10, 28–31.

Hartman L, Lago RCA. 1973. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 22, 475–476. PMid:4727126

Karabulut I, Turan S, Ergin G. 2004. Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends. Eur. Food Res. Technol. 218, 224–229.

Lai H-M, Lin T-C. 2006. Bakery Products: Science and Technology, in Hui YH, Corke H, De Leyn I, Nip W-K, Cross N (Eds.) Bakery Products: Science and Technology. Blackwell Publishing, Ames, pp. 3–65.

Manley D. 2000. Technology of biscuits, crackers and cookies. Woodhead Publishing, Cambridge, UK.

Moretto E, Fett R. 1999. Processamento e análise de biscoitos. Varela, São Paulo, BRA.

Pareyt B, Delcour JA. 2008. The role of wheat flour constituents, sugar, and fat in low moisture cereal-based products: a review of sugar-snap cookies. Crit. Rev. Food Sci. Nutr. 48, 824–839. PMid:18788008

Penteado AAT, Steel CJ. 2009. Avaliação de parâmetros de qualidade de biscoitos tipo Maria do mercado brasileiro. Simpósio Latino Americano de Ciência de Alimentos. UNICAMP, Campinas, BRA.

Ribeiro APB, Moura JMLN, Grimaldi R, Gonçalves LAG. 2007. Chemical interesterification: alternative to production of zero trans fats. Quím. Nova 30,1295–1300.

Smith WH. 1972. Biscuits, crackers & cookies: technology, production & management. MFI, New York, USA.

Sousa EA, Teixeira LCV, Mello MRPA, Torres EAFS, Neto JMM. 2003. Application of neural network for evaluation of the amount of mechanically deboned poultry meat in sausage. Food Sci. Technol. 23, 307–311.



How to Cite

Penteado AA, Nogueira AC, Gandra KM, Barrera-Arellano D, Steel CJ. Zero trans biscuits with soybean-based fats formulated using an artificial neural network. Grasas aceites [Internet]. 2018Jun.30 [cited 2024Feb.26];69(2):e251. Available from:




Most read articles by the same author(s)

1 2 > >>